-
Notifications
You must be signed in to change notification settings - Fork 7
/
event.py
463 lines (420 loc) · 18.3 KB
/
event.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
# -*- coding: utf-8 -*-
# @Time : 2023/4/5 下午9:42
# @Author : sudoskys
# @File : event.py
# @Software: PyCharm
import io
import re
from enum import Enum
from io import BytesIO
from pathlib import Path
from typing import Literal, List, Optional, Union
import librosa
import numpy as np
# import librosa
# import numpy as np
import soundfile as sf
import torch
from graiax import silkcoder
from loguru import logger
from pydantic import BaseModel
import utils
from component.warp import Parse
from onnx_infer.infer import commons
from onnx_infer.utils.onnx_utils import RunONNX
from pth2onnx import VitsExtractor
from text import text_to_sequence
# 类型
class VitsModelType(Enum):
TTS = "vits"
W2V2 = "w2v2"
HUBERT_SOFT = "soft-vits-vc"
class TtsSchema(BaseModel):
model_id: str = ""
text: str = "我看它的意思是... 今日は晴天で、日差しがまぶしいです。新鮮な空気が流れています。今天的天气真好!"
speaker_id: int = 0
audio_type: Literal["ogg", "wav", "flac", "silk"] = "wav"
length_scale: float = 1
noise_scale: float = 0.667
noise_scale_w: float = 0.8
sample_rate: int = 22050
load_prefer: bool = True
class ConvertSchema(BaseModel):
model_id: str = ""
# audio: BytesIO = None
speaker_id: int = 0
audio_type: Literal["ogg", "wav", "flac", "silk"] = "wav"
length_scale: float = 1
noise_scale: float = 0.667
noise_scale_w: float = 0.8
sample_rate: int = 22050
load_prefer: bool = True
class InferTask(BaseModel):
infer_sample: str
speaker_ids: int = 0
audio_type: Literal["ogg", "wav", "flac", "silk"] = "wav"
length_scale: float = 1.0
noise_scale: float = 0.667
noise_scale_w: float = 0.8
sample_rate: int = None
class ConvertTask(InferTask):
infer_sample: BytesIO
fn0: float = 0.1
class Config:
arbitrary_types_allowed = True
class ParseText(object):
def __init__(self):
pass
@staticmethod
def get_label_value(text, label, default, warning_name='value'):
try:
value = re.search(rf'\[{label}=(.+?)\]', text)
if value:
text = re.sub(rf'\[{label}=(.+?)\]', '', text, 1)
value = float(value.group(1))
else:
value = default
except ValueError as e:
print(f'Invalid {warning_name}!', e)
value = default
return value, text
@staticmethod
def get_label(text, label):
if f'[{label}]' in text:
return True, text.replace(f'[{label}]', '')
else:
return False, text
@staticmethod
def get_text(text, hps, cleaned=False):
if cleaned:
text_norm = text_to_sequence(text, hps.symbols, [])
else:
text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
# text_norm = np.array(text_norm, dtype=np.int64)
text_norm = torch.LongTensor(text_norm)
return text_norm
def get_stn_tst(self, c_text, hps_ms_config):
_cleaned, c_text = self.get_label(c_text, 'CLEANED')
_stn_tst = self.get_text(c_text, hps_ms_config, cleaned=_cleaned)
return _stn_tst
def clean_text(self, c_text):
_, c_text = self.get_label_value(c_text, 'LENGTH', 0, warning_name='length scale')
_, c_text = self.get_label_value(c_text, 'NOISE', 0, warning_name='noise scale')
_, c_text = self.get_label_value(c_text, 'NOISEW', 0, warning_name='deviation of noise')
_, c_text = self.get_label(c_text, 'CLEANED')
return c_text
def parse(self,
c_text: str,
length: float = 1,
noise: float = 0.667,
noise_w: float = 0.8,
):
_length_scale, c_text = self.get_label_value(c_text, 'LENGTH', length, warning_name='length scale')
_noise_scale, c_text = self.get_label_value(c_text, 'NOISE', noise, warning_name='noise scale')
_noise_scale_w, c_text = self.get_label_value(c_text, 'NOISEW', noise_w, warning_name='deviation of noise')
return _length_scale, _noise_scale, _noise_scale_w
class TtsGenerate(object):
"""
批次语音合成技术
"""
def __init__(self,
model_config_path: str,
model_path: str = None,
device: str = "cpu",
load_prefer: bool = True,
# hubert_soft_model_path=None,
):
self.load_prefer = load_prefer
self.model_config_path = model_config_path
self.model_path = model_path if model_path else None
self.device = device
self._out_path = f"./tts/{0}.wav"
self.hps_ms_config = utils.get_hparams_from_file(self.model_config_path)
self.net_g_ms = self.load_model()
self.n_speakers, self.n_symbols, self.emotion_embedding, self.speakers, self.use_f0 = self.parse_hps_ms(
hps_ms=self.hps_ms_config)
if self.n_symbols != 0:
if not self.emotion_embedding:
self.model_type = VitsModelType.TTS
else:
self.model_type = VitsModelType.W2V2
else:
self.model_type = VitsModelType.HUBERT_SOFT
# load hubert-soft model
self.hubert = None
if self.n_symbols == 0:
self.hubert = torch.hub.load("bshall/hubert:main", "hubert_soft", trust_repo=True).to(device)
def load_model(self):
# 判定是否存在模型
if not Path(self.model_config_path).exists():
return None
try:
_vits_base = VitsExtractor().warp_pth(model_config_path=self.model_config_path, model_path=self.model_path)
except Exception as e:
logger.exception(
f"Model Not Found Or Convert Error: {e} {self.model_config_path} ,可能是模型格式不正确,或者模型文件字段缺失")
return None
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
if utils.DEVICE == "cpu":
providers = ['CPUExecutionProvider']
model = RunONNX(model=_vits_base, providers=providers)
# model = onnx_infer.SynthesizerTrn(
# len(self.hps_ms_config.symbols),
# self.hps_ms_config.data.filter_length // 2 + 1,
# self.hps_ms_config.train.segment_size // self.hps_ms_config.data.hop_length,
# onnx_model=_vits_base,
# n_speakers=self.hps_ms_config.data.n_speakers,
# **self.hps_ms_config.model
# )
# utils.load_checkpoint(self.model_path, model, None)
# model.eval()
# utils.load_checkpoint(self.model_path, model)
# model.eval().to(torch.device(self.device))
return model
@property
def usable(self):
return self.net_g_ms is not None
def get_model_info(self):
model_info = self.hps_ms_config.info if 'info' in self.hps_ms_config.keys() else {
"name": None,
"description": None,
"author": None,
"cover": None,
"email": None
}
return model_info
@staticmethod
def load_prefer_noise(hps_ms, noise_scale, noise_scale_w, length_scale):
# 生成默认噪声
infer_prefer = hps_ms.infer if 'infer' in hps_ms.keys() else None
if infer_prefer is not None:
if 'noise_scale' in infer_prefer.keys():
noise_scale = infer_prefer.noise_scale
if 'noise_scale_w' in infer_prefer.keys():
noise_scale_w = infer_prefer.noise_scale_w
if 'length_scale' in infer_prefer.keys():
length_scale = infer_prefer.length_scale
return noise_scale, noise_scale_w, length_scale
@staticmethod
def parse_hps_ms(hps_ms):
# 角色
_n_speakers = hps_ms.data.n_speakers if 'n_speakers' in hps_ms.data.keys() else 0
# 符号
_n_symbols = len(hps_ms.symbols) if 'symbols' in hps_ms.keys() else 0
_emotion_embedding = hps_ms.data.emotion_embedding if 'emotion_embedding' in hps_ms.data.keys() else False
# 角色列表
_speakers = hps_ms.speakers if 'speakers' in hps_ms.keys() else ['0']
_use_f0 = hps_ms.data.use_f0 if 'use_f0' in hps_ms.data.keys() else False
return _n_speakers, _n_symbols, _emotion_embedding, _speakers, _use_f0
def get_speaker_list(self):
# 二维数组 [id,name]
id_list = []
for ids, name in enumerate(self.speakers):
id_list.append({"id": ids, "name": name})
return id_list
def infer_soft_vc(self,
task: ConvertTask = None,
):
"""
语音转换任务推理接口
:param task 任务
:return:
"""
if not self.hubert:
raise Exception("hubert-soft model not found")
# 读模型偏好
if self.load_prefer:
task.noise_scale, task.noise_scale_w, task.length_scale = self.load_prefer_noise(self.hps_ms_config,
task.noise_scale,
task.noise_scale_w,
task.length_scale
)
# 给RAW音频数据加上格式
# 载入并采样
# TODO librosa 采样问题,我们无法采样不标准的音频
_file = sf.SoundFile(task.infer_sample, "r", samplerate=44100, channels=1, subtype="PCM_16")
# audio, sampling_rate = sf.read(_file, dtype='float32', always_2d=True)
audio, sampling_rate = librosa.load(_file, sr=16000, mono=True)
# audio16000, sampling_rate = librosa.load(path=audio, sr=16000, mono=True)
if self.use_f0:
# audio, sampling_rate = sf.read(_file, samplerate=self.hps_ms_config.data.sampling_rate)
audio, sampling_rate = librosa.load(_file, sr=self.hps_ms_config.data.sampling_rate, mono=True)
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
# 计算时长
duration = audio.shape[0] / sampling_rate
if duration > 30:
raise Exception("audio too long")
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
# 创建 units
with torch.inference_mode():
_x_tst = self.hubert.units(torch.FloatTensor(audio).unsqueeze(0).unsqueeze(0).to(utils.DEVICE))
with torch.no_grad():
_x_tst_lengths = np.array([_x_tst.shape[1]], dtype=np.int64) # torch.LongTensor([_stn_tst.size(0)])
_sid = np.array([task.speaker_ids], dtype=np.int64)
scales = np.array([task.noise_scale, task.noise_scale_w, 1.0 / task.length_scale], dtype=np.float32)
scales.resize((1, 3))
ort_inputs = {
'input': _x_tst,
'input_lengths': _x_tst_lengths,
'scales': scales,
'sid': _sid
}
audio = np.squeeze(self.net_g_ms.run(model_input=ort_inputs))
audio *= 32767.0 / max(0.01, np.max(np.abs(audio))) * 0.6
audio = np.clip(audio, -32767.0, 32767.0)
_audio = audio.astype(np.int16)
del _x_tst, _x_tst_lengths, _sid
return audio
def infer_vits(self,
task: InferTask = None,
):
"""
文本转语音任务推理接口
:param task 任务
:return:
"""
task.infer_sample = ParseText().clean_text(task.infer_sample)
_stn_tst = ParseText().get_stn_tst(task.infer_sample, self.hps_ms_config)
# 读模型偏好
if self.load_prefer:
task.noise_scale, task.noise_scale_w, task.length_scale = self.load_prefer_noise(self.hps_ms_config,
task.noise_scale,
task.noise_scale_w,
task.length_scale
)
# 规则化文本覆盖
# length_scale, noise_scale, noise_scale_w = ParseText().parse(c_text,
# length=length_scale,
# noise=noise_scale,
# noise_w=noise_scale_w)
# 构造对应 tensor
with torch.no_grad():
_x_tst = _stn_tst.unsqueeze(0).numpy()
_x_tst_lengths = np.array([_x_tst.shape[1]], dtype=np.int64) # torch.LongTensor([_stn_tst.size(0)])
_sid = np.array([task.speaker_ids], dtype=np.int64)
scales = np.array([task.noise_scale, task.noise_scale_w, 1.0 / task.length_scale], dtype=np.float32)
scales.resize((1, 3))
"""
_x_tst = _stn_tst[np.newaxis, :].astype(np.float32)
_x_tst_lengths = np.array([_x_tst.shape[1]], dtype=np.int64)
_sid = np.array([task.speaker_ids], dtype=np.int64)
scales = np.array([task.noise_scale, task.noise_scale_w, 1.0 / task.length_scale], dtype=np.float32)
scales.resize(1, 3)
_x_tst = _x_tst.astype(np.int64)
_x_tst_lengths = _x_tst_lengths.astype(np.int64)
"""
ort_inputs = {
'input': _x_tst,
'input_lengths': _x_tst_lengths,
'scales': scales,
'sid': _sid
}
audio = np.squeeze(self.net_g_ms.run(model_input=ort_inputs))
audio *= 32767.0 / max(0.01, np.max(np.abs(audio))) * 0.6
audio = np.clip(audio, -32767.0, 32767.0)
_audio = audio.astype(np.int16)
# 释放内存
del _stn_tst, _x_tst, _x_tst_lengths, _sid
return _audio
def encode_audio(self, audio, sample_rate, audio_type):
# 写出返回
_file = BytesIO()
sample_rate = self.hps_ms_config.data.sampling_rate if not sample_rate else sample_rate
sample_rate = int(sample_rate)
sample_rate = 24000 if sample_rate < 0 else sample_rate
if audio_type == "ogg":
sf.write(_file, audio, sample_rate, format='ogg', subtype='vorbis')
elif audio_type == "wav":
# Write out audio as 24bit PCM WAV
sf.write(_file, audio, sample_rate, format='wav', subtype='PCM_24')
elif audio_type == "flac":
# Write out audio as 24bit Flac
sf.write(_file, audio, sample_rate, format='flac', subtype='PCM_24')
elif audio_type == "silk":
# Write out audio as 24bit Flac
byte_io = io.BytesIO(bytes())
sf.write(byte_io, audio, sample_rate)
_file = BytesIO(initial_bytes=silkcoder.encode(byte_io))
del byte_io
else:
sf.write(_file, audio, sample_rate, format='wav', subtype='PCM_24')
_file.seek(0)
return _file
def infer_task(self,
task: Union[InferTask, ConvertTask] = None,
):
"""
:param task 任务
:return:
"""
if isinstance(task, ConvertTask):
_audio = self.infer_soft_vc(task=task)
else:
_audio = self.infer_vits(task=task)
_file = self.encode_audio(_audio, task.sample_rate, task.audio_type)
# 获取 wav 数据
return _file
def infer_task_bat(self, task_list: List[Union[InferTask, ConvertTask]]):
"""
:param task_list 任务列表
:return:
"""
# 检查任务列表,确定编码类型和采样率一样
for task in task_list:
if task.sample_rate != task_list[0].sample_rate:
raise Exception("sample_rate must be same")
if task.audio_type != task_list[0].audio_type:
raise Exception("audio_type must be same")
# 批量推理
_file = []
for task in task_list:
if isinstance(task, InferTask):
_audio = self.infer_vits(task=task)
_file.append(_audio)
if isinstance(task, ConvertTask):
_audio = self.infer_soft_vc(task=task)
_file.append(_audio)
# 合并音频
audio_data = np.concatenate(_file, axis=0)
return self.encode_audio(audio_data, task_list[0].sample_rate, task_list[0].audio_type)
def create_vits_task(self,
c_text: str,
speaker_ids: int = 0,
audio_type: str = "wav",
length_scale: float = 1.0, noise_scale: float = 0.667, noise_scale_w: float = 0.8,
sample_rate: Optional[int] = None
) -> List[InferTask]:
"""
:param c_text 语句
:param speaker_ids 说话人id
:param noise_scale 音频噪声
:param noise_scale_w 音频噪声权重
:param length_scale 音频长度
:param sample_rate 采样率
:param audio_type 音频类型
:return:
"""
if self.hubert:
logger.warning("hubert is not None, maybe you shouldn't use `create_vits_task` function")
_task_list = []
parse = Parse()
sentence_cell = parse.create_cell(c_text, merge_same=False, cell_limit=140)
sentence_task = parse.pack_up_task(sentence_cell=sentence_cell, task_limit=140, strip=True)
for sentence in sentence_task:
last = InferTask(
infer_sample="".join(sentence),
speaker_ids=speaker_ids,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
sample_rate=sample_rate,
audio_type=audio_type
)
_task_list.append(last)
# TEST
# test = last.copy()
# test.infer_sample = "[ZH]测试,多任务正常工作[ZH]"
# _task_list.append(test)
return _task_list