forked from turboderp-org/exllamav2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmmlu.py
197 lines (155 loc) · 6.23 KB
/
mmlu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
from __future__ import annotations
import sys, os
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from exllamav2 import model_init
from exllamav2 import ExLlamaV2Cache, ExLlamaV2Cache_Q4, ExLlamaV2Cache_Q6, ExLlamaV2Cache_Q8
from exllamav2.generator import ExLlamaV2DynamicGenerator, ExLlamaV2DynamicJob, ExLlamaV2Sampler
import argparse, contextlib
import torch
import util
import random
# Args
parser = argparse.ArgumentParser(description = "Run MMLU evaluation on EXL2 model")
parser.add_argument("-cs", "--cache_size", type = int, default = None)
parser.add_argument("-cq4", "--cache_q4", action = "store_true", help = "Use Q4 cache")
parser.add_argument("-cq6", "--cache_q6", action = "store_true", help = "Use Q6 cache")
parser.add_argument("-cq8", "--cache_q8", action = "store_true", help = "Use Q8 cache")
parser.add_argument("-sub", "--subjects", type = str, default = "all", help = "Comma-separated list of categories to test, or 'all'")
parser.add_argument("-fs", "--fewshot_examples", type = int, default = 5, help = "Number of examples for fewshot examples, max 5")
parser.add_argument("-shf", "--shuffle", action = "store_true", help = "Shuffle choices randomly")
model_init.add_args(parser)
args = parser.parse_args()
# Init model and cache
model_init.check_args(args)
model_init.print_options(args)
model, tokenizer = model_init.init(
args,
allow_auto_split = True,
progress = True,
max_output_len = 1,
max_input_len = 2048
)
if args.cache_q4: cache_type = ExLlamaV2Cache_Q4
elif args.cache_q6: cache_type = ExLlamaV2Cache_Q6
elif args.cache_q8: cache_type = ExLlamaV2Cache_Q8
else: cache_type = ExLlamaV2Cache
cache = cache_type(
model,
lazy = not model.loaded,
max_seq_len = args.cache_size or model.config.max_seq_len
)
if not model.loaded:
model.load_autosplit(cache, progress = True)
# Generator
generator = ExLlamaV2DynamicGenerator(
model = model,
cache = cache,
tokenizer = tokenizer,
max_batch_size = 1024,
max_q_size = 1
)
c_options = "ABCD"
gen_settings = ExLlamaV2Sampler.Settings(
token_repetition_penalty = 1.0,
temperature = 1.0,
top_k = 10,
top_p = 1.0,
)
token_map = [tokenizer.single_id(piece) for piece in [" " + c for c in c_options]]
token_rmap = { token_map[i]: i for i in range(len(c_options)) }
gen_settings.allow_tokens(tokenizer, token_map)
# Get dataset
dataset_dev = util.get_dataset("cais/mmlu", "all", "dev")
dataset_all = util.get_dataset("cais/mmlu", "all", "test")
dataset_dev = sorted(dataset_dev, key = lambda q: q["subject"])
dataset_all = sorted(dataset_all, key = lambda q: q["subject"])
all_subjects = set([q["subject"] for q in dataset_dev])
if args.subjects != "all":
sel_subjects = args.subjects.split(",")
for s in sel_subjects:
if s not in all_subjects:
print(f"Subject: {s} is not present in dataset")
sys.exit()
all_subjects = set(sel_subjects)
# Optionally shuffle
if args.shuffle:
for problem in dataset_all:
if problem["subject"] in all_subjects:
perm = random.sample(range(4), k = 4)
problem["choices"] = [problem["choices"][i] for i in perm]
problem["answer"] = perm.index(problem["answer"])
# Format
def format_question(question: str, choices: list[str], answer: int | None):
f = question + "\n"
for i, c in enumerate(c_options):
f += c + ". " + choices[i] + "\n"
f += "Answer:"
if answer is not None:
f += " " + c_options[answer] + "\n\n"
return f
# Fewshot preprompts
preprompt_ids = {}
with util.get_progress() as progress:
task1 = progress.add_task("[red]Preprompts", total = len(all_subjects), name = "Preparing preprompts")
for subject in all_subjects:
preprompt = f"The following are multiple choice questions (with answers) about {subject.replace('_', ' ')}.\n\n"
fewshots = 0
for pq in dataset_dev:
if fewshots == args.fewshot_examples: break
if pq["subject"] != subject: continue
preprompt += format_question(pq["question"], pq["choices"], pq["answer"])
preprompt_ids[subject] = tokenizer.encode(preprompt, add_bos = True)
progress.update(task1, advance = 1)
# Questions
total_jobs = 0
for q in dataset_all:
if q["subject"] in all_subjects:
total_jobs += 1
with util.get_progress() as progress:
task1 = progress.add_task("[red]Questions", total=total_jobs, name="Preparing questions")
for q in dataset_all:
if q["subject"] not in all_subjects:
continue
prompt = format_question(q["question"], q["choices"], None)
prompt_ids = tokenizer.encode(prompt, add_bos = False)
job = ExLlamaV2DynamicJob(
input_ids = torch.cat([preprompt_ids[q["subject"]], prompt_ids], dim = -1),
gen_settings = gen_settings,
max_new_tokens = 1,
return_top_tokens = 4,
identifier = q,
)
generator.enqueue(job)
progress.update(task1, advance = 1)
# Work
with util.get_progress() as progress:
task1 = progress.add_task("[red]Sample", total = total_jobs, name = "Testing")
while generator.num_remaining_jobs():
results = generator.iterate()
for result in results:
if not result["eos"]:
continue
# Ignore completion and use top-K tokens only
top_tokens = result["top_k_tokens"]
top_probs = result["top_k_probs"]
q = result["identifier"]
correct_answer = q["answer"]
for i in range(top_tokens.shape[-1]):
if top_tokens[0, 0, i].item() == token_map[correct_answer]:
confidence = top_probs[0, 0, i].item()
q["correct_answer_confidence"] = confidence
q["answer_correct"] = token_rmap[top_tokens[0, 0, 0].item()] == correct_answer
progress.update(task1, advance = 1)
# Summarize
total = 0
correct = 0
confidence_sum = 0.0
for q in dataset_all:
if not "answer_correct" in q:
continue
total += 1
if q["answer_correct"]:
correct += 1
confidence_sum += q["correct_answer_confidence"]
print(f"Correct answers: {correct}/{total} = {correct/total*100:.2f}%")
print(f"Confidence: {confidence_sum/total*100:.2f}%")