forked from moon-hotel/TransformerClassification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClassificationModel.py
62 lines (57 loc) · 2.91 KB
/
ClassificationModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import torch
import torch.nn as nn
from MyTransformer import MyTransformerEncoder, MyTransformerEncoderLayer
from Embedding import PositionalEncoding, TokenEmbedding
class ClassificationModel(nn.Module):
def __init__(self, vocab_size=None,
d_model=512, nhead=8,
num_encoder_layers=6,
dim_feedforward=2048,
dim_classification=64,
num_classification=4,
dropout=0.1):
super(ClassificationModel, self).__init__()
self.pos_embedding = PositionalEncoding(d_model=d_model, dropout=dropout)
self.src_token_embedding = TokenEmbedding(vocab_size, d_model)
encoder_layer = MyTransformerEncoderLayer(d_model, nhead,
dim_feedforward,
dropout)
encoder_norm = nn.LayerNorm(d_model)
self.encoder = MyTransformerEncoder(encoder_layer,
num_encoder_layers, encoder_norm)
self.classifier = nn.Sequential(nn.Linear(d_model, dim_classification),
nn.Dropout(dropout),
nn.Linear(dim_classification, num_classification))
def forward(self,
src, # [src_len, batch_size]
src_mask=None,
src_key_padding_mask=None, # [batsh_size, src_len]
concat_type='sum' # 解码之后取所有位置相加,还是最后一个位置作为输出
):
src_embed = self.src_token_embedding(src) # [src_len, batch_size, embed_dim]
src_embed = self.pos_embedding(src_embed) # [src_len, batch_size, embed_dim]
memory = self.encoder(src=src_embed,
mask=src_mask,
src_key_padding_mask=src_key_padding_mask)
# [src_len,batch_size,embed_dim]
if concat_type == 'sum':
memory = torch.sum(memory, dim=0)
elif concat_type == 'avg':
memory = torch.sum(memory, dim=0) / memory.size(0)
else:
memory = memory[-1, ::] # 取最后一个时刻
# [src_len, batch_size, num_heads * kdim] <==> [src_len,batch_size,embed_dim]
out = self.classifier(memory) # 输出logits
return out # [batch_size, num_class]
if __name__ == '__main__':
src_len = 7
batch_size = 2
dmodel = 32
num_head = 4
src = torch.tensor([[4, 3, 2, 6, 0, 0, 0],
[5, 7, 8, 2, 4, 0, 0]]).transpose(0, 1) # 转换成 [src_len, batch_size]
src_key_padding_mask = torch.tensor([[True, True, True, True, False, False, False],
[True, True, True, True, True, False, False]])
model = ClassificationModel(vocab_size=10, d_model=dmodel, nhead=num_head)
logits = model(src, src_key_padding_mask=src_key_padding_mask)
print(logits.shape)