Skip to content

Latest commit

 

History

History
61 lines (45 loc) · 2.13 KB

README.md

File metadata and controls

61 lines (45 loc) · 2.13 KB

Opt-GO-3D-2D-Registration

浙大机器人交叉创新实践课程参考代码:基于CMA-ES算法和梯度方向测度(GO)的3D/2D医学图像配准算法(Python实现)

一、安装依赖

  • Python 3
  • Numpy
  • ITK 5.0
  • pycma
  • Matplotlib
  • Cython
  • CUDA >= 9.0
  • PyTorch >= 1.1

推荐使用Anaconda创建Python虚拟环境运行代码 Anaconda下载地址:https://www.anaconda.com/products/individual

创建虚拟环境:conda create -n your_env_name python=3.7

激活虚拟环境:conda activate your_env_name

退出虚拟环境:conda deactivate

激活虚拟环境后,安装依赖:pip install -r requirements.txt

注意:CUDA和PyTorch根据内置NVIDIA显卡版本自行安装

二、3D/2D Registration

该模块实现Opt-GO配准算法,即本课程基础实践作业的参考结果

运行测试程序

在项目根目录下,运行:

cd 3D_2D_Registration/test
python 3D_2D_Registration_Multiview.py

注意:3D_2D_Registration_Multiview.py中测试用例的路径需自行修改

运行结果

avatar

左侧图片是术中采集的侧位(X光)胸片,右侧图片是配准后的术前胸腔CT产生的Digitally Reconstructed Radiography(DRR)

三、Digitally Reconstructed Radiography(DRR)

该模块包含:

  • 数字重建透视图生成(GPU加速)
  • 梯度方向测度计算(GPU加速)

编译方法

在项目根目录下,运行:

cd CUDA_DRR_Metric
./cuda_debugger.sh

注意:cuda_debugger.sh文件中的路径需要自行修改;编译出的动态链接库(.so文件)使用方法参考3D/2D Registration模块源码;Windows下编译需要安装可视化cmake工具和Visual Studio(推荐使用VS2017),编译完成后得到的动态链接库为.pyd文件

四、参考文献

3D–2D image registration for target localization in spine surgery: investigation of similarity metrics providing robustness to content mismatch(T De Silva. 2016)

Fast calculation of the exact radiological path for a three-dimensional CT array(Siddon. 1985)

Accelerated ray tracing for radiotherapy dose calculations on a GPU(Greef. 2009)