-
Notifications
You must be signed in to change notification settings - Fork 107
/
filters.py
33 lines (29 loc) · 1.11 KB
/
filters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from PIL import Image, ImageDraw, ImageOps, ImageFilter
from random import *
import math
F_Blur = {
(-2,-2):2,(-1,-2):4,(0,-2):5,(1,-2):4,(2,-2):2,
(-2,-1):4,(-1,-1):9,(0,-1):12,(1,-1):9,(2,-1):4,
(-2,0):5,(-1,0):12,(0,0):15,(1,0):12,(2,0):5,
(-2,1):4,(-1,1):9,(0,1):12,(1,1):9,(2,1):4,
(-2,2):2,(-1,2):4,(0,2):5,(1,2):4,(2,2):2,
}
F_SobelX = {(-1,-1):1,(0,-1):0,(1,-1):-1,(-1,0):2,(0,0):0,(1,0):-2,(-1,1):1,(0,1):0,(1,1):-1}
F_SobelY = {(-1,-1):1,(0,-1):2,(1,-1):1,(-1,0):0,(0,0):0,(1,0):0,(-1,1):-1,(0,1):-2,(1,1):-1}
def appmask(IM,masks):
PX = IM.load()
w,h = IM.size
NPX = {}
for x in range(0,w):
for y in range(0,h):
a = [0]*len(masks)
for i in range(len(masks)):
for p in masks[i].keys():
if 0<x+p[0]<w and 0<y+p[1]<h:
a[i] += PX[x+p[0],y+p[1]] * masks[i][p]
if sum(masks[i].values())!=0:
a[i] = a[i] / sum(masks[i].values())
NPX[x,y]=int(sum([v**2 for v in a])**0.5)
for x in range(0,w):
for y in range(0,h):
PX[x,y] = NPX[x,y]