layout | title |
---|---|
default |
Schedule - scRNAseq course |
This course is given at Scilifelab Solna, Rooms Air & Fire, ground floor to the left from the main entrance.
Lecture slides will be provided as links as they get completed.
Time | Description | Lecturer |
---|---|---|
09.00 | Course introduction | Åsa Björklund |
09.15 | scRNAseq methodologies and ESCG platform | Karolina Wallenborg |
10.00 | Coffee Break | |
10.30 | scRNAseq Quality Control | Åsa Björklund |
11.15 | Data normalization | Åsa Björklund |
12.10 | Lunch | |
13.15 | Intro to exercises | Åsa Björklund |
13.30 | Exercises: Quality control | Åsa, Paulo, Anna |
15.00 | Coffee Break | |
15.30 | Dimensionality reduction | Paulo Czarnewski |
16.30 | Wrap up of todays lectures | Åsa & Paulo |
Time | Description | Lecturer |
---|---|---|
09.00 | Exercises: Dimensionality reduction | Åsa, Paulo, Nikolay, Rui |
10.00 | Coffee Break | |
10.30 | Batch correction + Data integration | Paulo Czarnewski |
11.15 | Exercises: Data integration | Åsa, Paulo, Nikolay, Rui |
12.00 | Lunch | |
13.00 | Clustering techniques and scRNAseq toolkits | Åsa Björklund |
13.45 | Exercises: Clustering | Åsa, Paulo, Nikolay, Rui |
14.45 | Coffee Break | |
15.15 | Exercises: Clustering (continued) | Åsa, Paulo, Nikolay, Rui |
16.00 | Invited seminar: Ins and outs of UMAP and tSNE | Nikoaly Oskolkov |
16.30 | Wrap up of todays lectures | Åsa & Paulo |
18.00 | ** Course dinner at Shanti - Touch of bengal ** |
Time | Description | Lecturer |
---|---|---|
09.00 | Differential expression | Olga Dethlefsen |
09.45 | Coffee Break | |
10.15 | Exercises: Differential expression | Åsa, Paulo, Olga, Johan |
11.15 | Trajectory inference analysis | Paulo Czarnewski |
12.00 | Lunch | |
13.00 | Exercises: Trajectory inference | Åsa, Paulo, Olga, Johan |
14.00 | Coffee Break | |
14.30 | Invited seminar: Single-cell multi-omics (Protein + RNA) | Johan Reimegård |
15.00 | Invited seminar: Spatial transcriptomics | Lars Borm |
15.30 | Invited seminar: PanglaoDB | Oscar Franzen |
16.00 | Wrap up of todays lectures | Åsa & Paulo |
16.15 | Course Summary | Åsa & Paulo |
Time | Description | Lecturer |
---|---|---|
09.00 | Bring your own data (until 16.00) | Åsa, Paulo, Johan, Rui |
You can also download pre-processed datasets from PanglaoDB. Click on view for one dataset and then click on [ RData ] to download the compressed matrix. Put all the files into a single folder and then run the script below to merge them together:
#Set working directory where you downloaded the data
setwd("~/Downloads")
#get the names of all SRA files you downlaoded
SRA_file_list <- list.files(pattern = "SRA")
#for each file, load the matrix and add it to the list of matrices
file_list <- list()
for(i in SRA_file_list){
load(i)
rownames(sm) <- sub( "_.*","",rownames(sm) )
rownames(sm) <- sub( "[.].*","",rownames(sm) )
sm <- Matrix::Matrix( rowsum(as.matrix(sm),rownames(sm)) ,sparse = T)
file_list[[i]] <- sm
}
#get a vector of all genes found in the matrix
all_genes <- unique(unlist(lapply(file_list,function(x) return(rownames(x)))))
all_cells <- unique(unlist(lapply(file_list,function(x) return(colnames(x)))))
#create a empty matrix with all genes and all cells found
combined_data <- Matrix::Matrix(0,nrow = length(all_genes),
ncol = length(all_cells),
sparse = T,
dimnames = list(all_genes,all_cells))
#fill the matrix with the values in each file
for(i in names(file_list)){
combined_data [rownames(file_list[[i]]),colnames(file_list[[i]])] <- file_list[[i]]
}
#Remove intermediate files
rm(all_genes,all_cells,file_list,sm,i,SRA_file_list)
#This is now your combined data
combined_data
Each day we will have coffee around 10.00 and at 15.00 during the exercises. Lunches will be at Nanna Svarz aroun 12.00 each day.
Icons are provided from [www.svgrepo.com](www.svgrepo.com)