forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_jit_fuser.py
992 lines (824 loc) · 40.4 KB
/
test_jit_fuser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
# -*- coding: utf-8 -*-
# Owner(s): ["oncall: jit"]
import unittest
import os
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.testing import FileCheck
from unittest import skipIf
from torch.testing._internal.common_utils import run_tests, IS_SANDCASTLE, ProfilingMode, GRAPH_EXECUTOR, \
enable_profiling_mode_for_profiling_tests, IS_WINDOWS, TemporaryDirectoryName, shell
from torch.testing._internal.jit_utils import JitTestCase, enable_cpu_fuser, _inline_everything, \
RUN_CUDA, RUN_CUDA_HALF, RUN_CUDA_MULTI_GPU, warmup_backward
from textwrap import dedent
from itertools import product, permutations
from torch.testing._internal.common_cuda import with_tf32_off
from test_jit import backward_graph, all_backward_graphs, get_lstm_inputs, get_milstm_inputs, \
LSTMCellC, LSTMCellF, LSTMCellS, MiLSTMCell
if GRAPH_EXECUTOR == ProfilingMode.PROFILING:
torch._C._jit_set_profiling_executor(True)
torch._C._jit_set_profiling_mode(True)
def strip_profiling_nodes(nodes):
profiling_opcodes = set(['prim::BailoutTemplate', 'prim::BailOut'])
return [n for n in nodes if n.kind() not in profiling_opcodes]
def warmup_forward(f, *args):
profiling_count = 2
for i in range(profiling_count):
results = f(*args)
return results
@skipIf(GRAPH_EXECUTOR == ProfilingMode.LEGACY, "skip due to SIGIOT failures, #67646")
class TestFuser(JitTestCase):
def assertAllFused(self, graph, except_for=()):
diff_graphs = [n for n in graph.nodes() if n.kind() == 'prim::DifferentiableGraph']
if len(diff_graphs) > 0:
self.assertEqual(len(diff_graphs), 1)
graph = diff_graphs[0].g('Subgraph')
allowed_nodes = {'prim::Constant', 'prim::FusionGroup', 'prim::BailoutTemplate',
'prim::BailOut', 'prim::TupleConstruct'} | set(except_for)
self.assertTrue(all(node.kind() in allowed_nodes for node in graph.nodes()),
'got {}'.format(graph))
self.assertTrue([node.kind() for node in graph.nodes()].count('prim::FusionGroup') == 1)
def _test_fused_abs(self, device='cpu'):
def func(x):
return x.abs() * 2
a = torch.randn(5, device=device)
scripted = self.checkScript(func, (a,))
self.assertAllFused(scripted.graph_for(a))
@unittest.skipIf(IS_SANDCASTLE, "NYI: fuser CPU support for Sandcastle")
@enable_cpu_fuser
def test_abs_cpu(self):
self._test_fused_abs()
@unittest.skipIf(not IS_WINDOWS, "This is meant to be Windows-specific")
@unittest.skipIf(IS_SANDCASTLE, "NYI: fuser CPU support for Sandcastle")
@enable_cpu_fuser
def test_abs_cpu_unicode_temp_dir(self):
with TemporaryDirectoryName(suffix='中文') as dname:
shell_env = os.environ.copy()
shell_env['TMP'] = dname
cmd = [sys.executable, os.path.basename(__file__), type(self).__name__ + '.test_abs_cpu']
legacy_jit_flag = '--jit_executor=legacy'
for v in sys.argv:
if v == legacy_jit_flag:
cmd.append(legacy_jit_flag)
return_code = shell(cmd, cwd=os.path.dirname(__file__), env=shell_env)
self.assertEqual(return_code, 0)
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
def test_abs_cuda(self):
self._test_fused_abs(device="cuda")
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
def test_zero_element_tensors(self):
def decode(sin_t, cos_t):
theta = torch.atan2(sin_t.float(), cos_t.float())
return theta
sin = torch.zeros(0, device="cuda")
cos = torch.zeros(0, device="cuda")
inputs = [sin, cos]
ge = self.checkScript(decode, inputs)
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_arg_configurations_smoke_cuda(self):
# A smoke test to make sure we won't use the same kernel for contiguous
# and non-contiguous arguments.
# TODO: add optionally enabled debug counters to the fuser to verify
# that we really can tell the difference between configurations
def f(x, y):
z1, z2 = (x + y).chunk(2, dim=1)
return z1 * z2
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
y = torch.randn(4, 4, dtype=torch.float, device='cuda')
traced_f = torch.jit.trace(f, (x, y,))
self.assertEqual(traced_f(x.t().contiguous(), y), traced_f(x.t(), y))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_broadcast_cuda(self):
def scaleshift(x, scale, shift):
return x * scale + shift
inputs = [
torch.randn(4, 4, dtype=torch.float, device='cuda'),
torch.randn(4, dtype=torch.float, device='cuda'),
torch.randn(4, dtype=torch.float, device='cuda'),
]
ge = self.checkTrace(scaleshift, inputs)
self.assertAllFused(ge.graph_for(*inputs))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.LEGACY, "no bfloat support with profiling on")
def test_cuda_bfloat16(self):
def foo(x, y):
return (x + y).relu()
m = torch.jit.script(foo)
x = torch.randn(65536).cuda().bfloat16()
y = torch.randn_like(x)
self.assertAllFused(m.graph_for(x, y))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@unittest.skipIf(not RUN_CUDA_HALF, "no half support")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.LEGACY, "no half support with profiling on")
def test_cuda_half(self):
x = torch.randn(4, 4, dtype=torch.half, device='cuda')
y = torch.randn(4, 4, dtype=torch.half, device='cuda')
funcs = [
self.fn_test_comparison_gt_lt,
self.fn_test_relu,
self.fn_test_exp
]
# Note: Non fused inputs must be float to prevent loss of precision
inputs = (x.float(), y.float())
fusion_inputs = (x, y)
for fn in funcs:
local_inputs = [t.clone().requires_grad_() for t in inputs]
local_fusion_inputs = [t.clone().requires_grad_() for t in fusion_inputs]
# Verifies outputs
fusion = torch.jit.trace(fn, local_fusion_inputs, check_trace=False)
outputs = fn(*local_inputs)
fusion_outputs = fusion(*local_fusion_inputs)
outputs_half = [t.half() for t in outputs]
self.assertEqual(outputs_half, fusion_outputs)
# Verifies gradients
for output, fusion_output in zip(outputs_half, fusion_outputs):
grads = torch.autograd.grad(
output.float().sum(), local_inputs, allow_unused=True, retain_graph=True)
fusion_grads = torch.autograd.grad(
fusion_output.sum(), local_fusion_inputs, allow_unused=True, retain_graph=True)
grads_half = [t.half() for t in grads]
self.assertEqual(grads_half, fusion_grads)
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_checks_cat_inputs(self):
# We shouldn't treat cat nodes as broadcasting. All their inputs
# need to be checked for having the same map size, before we can
# run the kernel.
def f(x, y):
return torch.cat([x + 2 * x + x ** 2, y + 4 * y + y ** 3], dim=0)
# NOTE: y is broadcastable to x, but output of f(x, y) should have
# shape 3x4, and not 4x4.
x = torch.randn(2, 4, dtype=torch.float, device='cuda')
y = torch.randn(1, 4, dtype=torch.float, device='cuda')
scripted = self.checkScript(f, (x, y))
self.assertAllFused(scripted.graph_for(x, y))
@unittest.skipIf(not RUN_CUDA, "No CUDA")
def test_remainder_cuda(self):
def cuda_rem(x, y):
return 1 + torch.remainder(x, y) - 1
a = torch.rand([512], dtype=torch.float).cuda()
b = torch.rand([512], dtype=torch.float).cuda()
inputs = [a, b]
ge = self.checkScript(cuda_rem, inputs)
graph = ge.graph_for(*inputs)
self.assertAllFused(graph)
@unittest.skipIf(not RUN_CUDA, "No CUDA")
def test_chunk_cuda(self):
def fn(x):
a, b, c = x.chunk(3, 1)
return a * b + c
inputs = [torch.randn(10, 6, dtype=torch.float, device='cuda')]
ge = self.checkScript(fn, inputs)
graph = ge.graph_for(*inputs)
self.assertAllFused(graph)
FileCheck().check("prim::ConstantChunk[chunks=3, dim=1]").run(str(graph))
@staticmethod
def _test_chunk_correctness(self, device='cpu'):
def chunk_4_0(x):
x0, x1, x2, x3 = x.chunk(4, 0)
return x0 + x1 + x2 + x3
def chunk_4_1(x):
x0, x1, x2, x3 = x.chunk(4, 1)
return x0 + x1 + x2 + x3
def chunk_4_last(x):
x0, x1, x2, x3 = x.chunk(4, 2)
return x0 + x1 + x2 + x3
fns = [chunk_4_0, chunk_4_1, chunk_4_last]
tensors = [
# splitSize = 1
torch.randn(4, 4, 4, dtype=torch.float, device=device),
# contiguous case
torch.randn(12, 8, 16, dtype=torch.float, device=device),
# non-contiguous case
torch.randn(12, 8, 16, dtype=torch.float, device=device).transpose(1, 2),
]
for tensor in tensors:
for fn in fns:
self.checkScript(fn, [tensor])
@unittest.skipIf(IS_SANDCASTLE, "NYI: fuser CPU support for Sandcastle")
@enable_cpu_fuser
def test_chunk_correctness(self):
return self._test_chunk_correctness(self, 'cpu')
@unittest.skipIf(not RUN_CUDA, "No CUDA")
def test_chunk_correctness_cuda(self):
return self._test_chunk_correctness(self, 'cuda')
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_chunk_distributes_cuda(self):
def f(x, y):
z1, z2 = (x + y).chunk(2, dim=1)
return z1 * z2
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
y = torch.randn(4, 4, dtype=torch.float, device='cuda')
ge = self.checkTrace(f, (x, y))
graph = ge.graph_for(x, y)
FileCheck().check("broadcast_tensors").check('with prim::FusionGroup_') \
.check_count('ConstantChunk', 2, exactly=True).run(str(graph))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_chunk_motion_deduplicates_inputs(self):
def func1(x):
z = x * x
z0, z1 = z.chunk(2)
return z0 * z1
def func2(x):
z = x * x * x
z0, z1 = z.chunk(2)
return z0 * z1
inputs = [
torch.tensor([1.1, 1.2], device='cuda', dtype=torch.float),
]
for func in [func1, func2]:
module = self.checkScript(func, inputs)
forward_graph = module.graph_for(*inputs)
self.assertGraphContainsExactly(forward_graph, 'prim::FusionGroup', 1)
fusion_group = list(forward_graph.nodes())[-1]
self.assertEqual(len(list(fusion_group.inputs())), 1)
@unittest.skipIf(not RUN_CUDA, "No CUDA")
def test_chunk_multiple_cuda(self):
# The arguments are intentionally used out of order as a test to see
# if the fusion compiler adds extra args in the correct order
def fn(s, x, y, z):
z1, z2 = z.chunk(2, 2)
x1, x2, x3 = x.chunk(3, 1)
y1, y2 = y.chunk(2, 0)
return s + x1 + x2 + x3 + y1 + y2 + z1 + z2
inputs = [
torch.randn(5, 2, 3, dtype=torch.float, device='cuda'),
torch.randn(5, 6, 3, dtype=torch.float, device='cuda'),
torch.randn(10, 2, 3, dtype=torch.float, device='cuda'),
torch.randn(5, 2, 6, dtype=torch.float, device='cuda'),
]
ge = self.checkScript(fn, inputs)
self.assertAllFused(ge.graph_for(*inputs))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_minmax(self):
def tmax(a, b):
return torch.max(2 * a, b)
def tmin(a, b):
return torch.min(2 * a, b)
a = torch.randn(4, 4, dtype=torch.float, device="cuda")
b = torch.randn(4, 4, dtype=torch.float, device="cuda")
nan = torch.tensor(float('nan'), dtype=torch.float, device="cuda")
for f, inputs in product(
(tmax, tmin),
([a, b], [a, nan], [b, nan])):
s = self.checkScript(f, inputs)
self.assertAllFused(s.graph_for(*inputs))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_clamp(self):
def func2(a, b):
return torch.clamp(a + b, min=0, max=2)
def funcInf(a, b):
return torch.clamp(a + b, min=0, max=float('inf'))
def funcOptMin(a, b):
return torch.clamp(a + b, max=2)
def funcOptMax(a, b):
return torch.clamp(a + b, min=0)
a = torch.randn(4, 4, dtype=torch.float, device='cuda', requires_grad=True)
b = torch.randn(4, 4, dtype=torch.float, device='cuda')
nan = torch.tensor(float('nan'), dtype=torch.float, device='cuda')
funcs = (func2, funcInf, funcOptMin, funcOptMax)
for f, inputs in product(funcs, [[a, b], [a, nan]]):
f.__disable_jit_function_caching__ = True
inp1, inp2 = inputs
s = self.checkScript(f, (inp1, inp2), profiling=ProfilingMode.PROFILING)
self.assertAllFused(s.graph_for(inp1, inp2), except_for={'aten::size', 'aten::_size_if_not_equal'})
c = s(inp1, inp2)
with enable_profiling_mode_for_profiling_tests():
warmup_backward(c.sum())
graph = backward_graph(s)
self.assertAllFused(graph, except_for={'aten::Float', 'aten::_grad_sum_to_size'})
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.LEGACY, "no half support with profiling on")
def test_dropout(self):
def func(x):
x = torch.nn.functional.dropout(x)
return torch.nn.functional.relu(x)
a = torch.randn(4, 4, dtype=torch.float, device='cuda', requires_grad=True)
s = torch.jit.script(func)
c = s(a)
c = s(a)
warmup_backward(c.sum())
# skip_check to skip extra bailout nodes in between
graph = backward_graph(s, skip_check=True)
self.assertAllFused(graph, except_for={'aten::div', 'prim::Constant'})
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_comparison_eq_ne(self):
def f(x, y):
mask = (x == 0).type_as(x)
z = x * mask + y
mask = (x != 0).type_as(x)
z = z * mask + y
return z
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
y = torch.randn(4, 4, dtype=torch.float, device='cuda')
ge = self.checkTrace(f, (x, y))
self.assertAllFused(ge.graph_for(x, y))
@staticmethod
def fn_test_comparison_gt_lt(x, y):
mask = (x > 0).type_as(x)
z = x * mask + y
mask = (x < 0).type_as(x)
z = z * mask + y
return z
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_comparison_gt_lt_cuda(self):
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
y = torch.randn(4, 4, dtype=torch.float, device='cuda')
ge = self.checkTrace(self.fn_test_comparison_gt_lt, (x, y))
self.assertAllFused(ge.graph_for(x, y))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_comparison_ge_le_cuda(self):
def f(x, y):
mask = (x >= 0).type_as(x)
z = x * mask + y
mask = (x <= 0).type_as(x)
z = z * mask + y
return z
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
y = torch.randn(4, 4, dtype=torch.float, device='cuda')
ge = self.checkTrace(f, (x, y))
self.assertAllFused(ge.graph_for(x, y))
x.requires_grad_(True)
y.requires_grad_(True)
self.assertAllFused(ge.graph_for(x, y), except_for=("aten::size", "prim::BroadcastSizes",
"aten::_size_if_not_equal"))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_addcmul_cuda(self):
t = torch.randn(1, 4, dtype=torch.float, device='cuda')
t1 = torch.randn(4, 1, dtype=torch.float, device='cuda')
t2 = torch.randn(1, 4, dtype=torch.float, device='cuda')
def foo(t, t1, t2):
return t.addcmul(t + 1, t2, value=0.1)
ge = self.checkTrace(foo, (t, t1, t2), allow_unused=True)
graph = ge.graph_for(t, t1, t2)
self.assertAllFused(graph)
# TODO: We leak CUDA memory here because the traced graph holds onto a
# constant-ified tensor. Since the Python-global CompilationUnit is alive
# until the end of the process, the memory is effectively leaked.
# Removed `_cuda` suffix from this test which disables leak-checking.
# If this is a real problem, we'll need to revisit Torchscript Function
# lifetimes in Python.
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_lerp(self):
start = torch.randn(4, 1, dtype=torch.float, device='cuda')
end = torch.randn(1, 4, dtype=torch.float, device='cuda')
weight = torch.tensor(0.5, dtype=torch.float, device='cuda')
# scalar weight overload
def foo_weight_scalar(start, end):
return torch.lerp(start + 1, end, 0.5)
# tensor weight overload
def foo_weight_tensor(start, end):
return torch.lerp(start + 1, end, weight)
ge_weight_scalar = self.checkTrace(foo_weight_scalar, (start, end))
graph = ge_weight_scalar.graph_for(start, end)
self.assertAllFused(graph)
ge_weight_tensor = self.checkTrace(foo_weight_tensor, (start, end))
graph = ge_weight_tensor.graph_for(start, end)
self.assertAllFused(graph)
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_concat_cuda(self):
hx = torch.randn(3, 20, dtype=torch.float, device='cuda')
cx = torch.randn(3, 20, dtype=torch.float, device='cuda')
def foo(hx, cx):
return torch.cat((hx + cx, hx * cx))
ge = self.checkTrace(foo, (hx, cx))
graph = ge.graph_for(hx, cx)
self.assertAllFused(graph)
FileCheck().check("FusedConcat").check_next("return").run(str(graph))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_concat_invariant_cuda(self):
# Invariant: the output of prim::FusedConcat may
# not be an input to any node inside the FusionGroup.
def fn(x, y, z):
x1 = x + y
y1 = x - y
w = torch.cat([x1, y1])
return w + z
x = torch.randn(2, 2, dtype=torch.float, device='cuda')
y = torch.randn(2, 2, dtype=torch.float, device='cuda')
z = torch.randn(4, 2, dtype=torch.float, device='cuda')
ge = self.checkTrace(fn, (x, y, z))
graph = ge.graph_for(x, y, z)
self.assertAllFused(graph, except_for={'aten::add'})
FileCheck().check("FusedConcat").check_next("return").run(str(graph))
@staticmethod
def fn_test_exp(x, y):
return (x + .5 * y).exp()
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_exp_cuda(self):
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
y = torch.randn(4, 4, dtype=torch.float, device='cuda')
ge = self.checkTrace(self.fn_test_exp, (x, y))
self.assertAllFused(ge.graph_for(x, y))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.LEGACY, "broken with profiling on")
@torch._jit_internal._disable_emit_hooks_decorator
@_inline_everything
def test_fuse_decompose_normalization(self):
class ResLike(torch.jit.ScriptModule):
def __init__(self, norm_module):
super(ResLike, self).__init__()
self.nm = norm_module
@torch.jit.script_method
def forward(self, x, y):
return y + torch.relu(self.nm(x))
def test_norm_decompose(nm, in_opt_graph, not_in_opt_graph, in_fusegraph):
model = ResLike(nm).cuda()
model_noopt = ResLike(nm).cuda()
model_noopt.load_state_dict(model.state_dict())
x = torch.randn(2, 16, 8, 8, device='cuda')
y = torch.randn(2, 16, 8, 8, device='cuda')
# FIXME: We need differentiation for CNNs for this optimization to trigger
with torch.no_grad():
out = model(x, y)
graph = model.graph_for(x, y)
rep = str(graph)
with torch.jit.optimized_execution(False):
out_noopt = model_noopt(x, y)
rep_noopt = str(model_noopt.graph_for(x, y))
self.assertEqual(out, out_noopt, atol=3e-5)
# Check that normalization op has really been decomposed
for node_in_graph in in_opt_graph:
self.assertIn(node_in_graph, rep)
for node_not_in_graph in not_in_opt_graph:
self.assertNotIn(node_not_in_graph, rep)
self.assertIn(node_not_in_graph, rep_noopt)
fusion_groups = [node for node in graph.nodes() if node.kind() == 'prim::FusionGroup']
self.assertEqual(len(fusion_groups), 1)
fused_graph = str(fusion_groups[0].g('Subgraph'))
for node_in_fusegraph in in_fusegraph:
self.assertIn(node_in_fusegraph, fused_graph)
# test for batchnorm decompose
bm = nn.BatchNorm2d(16)
test_norm_decompose(bm, ['aten::batch_norm_update_stats'],
['aten::batch_norm('], ['aten::sqrt'])
# test for layernorm decompose
lm = nn.LayerNorm(8)
test_norm_decompose(lm, ['aten::batch_norm_stats'],
['aten::layer_norm('], ['aten::sub', 'aten::mul', 'aten::add'])
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_threshold(self):
def f(x):
return torch.threshold(x, 0, -10) + x + x + x
x = torch.tensor([-1, -0.5, 0, 1, 2, 3], device='cuda')
scripted = self.checkScript(f, (x,))
self.assertAllFused(scripted.graph_for(x))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_scalar_arg_cuda(self):
def fn_test_scalar_arg(x: torch.Tensor, p: float) -> torch.Tensor:
return p * (x * x + x)
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
p = 3
scripted = self.checkScript(fn_test_scalar_arg, (x, p))
self.assertAllFused(scripted.graph_for(x, p))
x.requires_grad_(True)
# use another function otherwise we will bailout
# and won't be able to do fused checks
def fn_test_scalar_arg_requires_grad(x: torch.Tensor, p: float) -> torch.Tensor:
return p * (x * x + x)
scripted = torch.jit.script(fn_test_scalar_arg_requires_grad)
out = scripted(x, p)
self.assertAllFused(scripted.graph_for(x, p), except_for=("aten::size", "prim::BroadcastSizes",
"aten::_size_if_not_equal"))
@unittest.skipIf(IS_SANDCASTLE, "NYI: fuser CPU support for Sandcastle")
@unittest.skip("deduplicating introduces aliasing in backward graph's outputs")
@enable_cpu_fuser
def test_fuser_deduplication(self):
# See that fusion kernel outputs are deduplicated when removing _grad_sum_to_size in the fuser's compilation
# see the discussion in PR #14957.
def f(x, y):
return torch.sigmoid(x + y)
b = torch.randn(5, 5, requires_grad=True)
a = torch.randn(5, 5, requires_grad=True)
s = self.checkScript(f, (a, b))
self.assertAllFused(s.graph_for(a, b), except_for={
'aten::size', 'aten::_size_if_not_equal', 'prim::BroadcastSizes'})
c = s(a, b)
results = warmup_backward(c.sum(), [a, b])
ga2, gb2 = results.pop()
graph = backward_graph(s)
self.assertAllFused(graph)
# check that a, b share storage, i.e. were generated as a single output in the fuser
self.assertEqual(ga2.data_ptr(), gb2.data_ptr())
@unittest.skipIf(IS_SANDCASTLE, "NYI: fuser CPU support for Sandcastle")
@enable_cpu_fuser
@unittest.skip("temporarily disabled because fusion was restricted in fixing #22833")
def test_fuser_iou(self):
# This checks if most of Intersection over Union is fused.
# In particular, the backward contains many _grad_sum_to_size.
def iou(b1x1, b1y1, b1x2, b1y2, b2x1, b2y1, b2x2, b2y2):
ltx = torch.max(b1x1, b2x1) # [N,M]
lty = torch.max(b1y1, b2y1)
rbx = torch.min(b1x2, b2x2)
rby = torch.min(b1y2, b2y2)
w = (rbx - ltx).clamp(min=0, max=float('inf')) # [N,M]
h = (rby - lty).clamp(min=0, max=float('inf')) # [N,M]
inter = w * h # [N,M]
area1 = (b1x2 - b1x1) * (b1y2 - b1y2) # [N,1]
area2 = (b2x2 - b2x1) * (b2y2 - b2y2) # [1,M]
iou = inter / (area1 + area2 - inter)
return iou
box1 = torch.randn(5, 4, requires_grad=True)
box2 = torch.randn(5, 4, requires_grad=True)
# unsqueezing can currently not be fused
b1x1 = box1[:, 0].unsqueeze(1) # [N,1]
b1y1 = box1[:, 1].unsqueeze(1)
b1x2 = box1[:, 2].unsqueeze(1)
b1y2 = box1[:, 3].unsqueeze(1)
b2x1 = box2[:, 0].unsqueeze(0) # [1,N]
b2y1 = box2[:, 1].unsqueeze(0)
b2x2 = box2[:, 2].unsqueeze(0)
b2y2 = box2[:, 3].unsqueeze(0)
s = self.checkScript(iou, (b1x1, b1y1, b1x2, b1y2, b2x1, b2y1, b2x2, b2y2))
self.assertAllFused(s.graph_for(b1x1, b1y1, b1x2, b1y2, b2x1, b2y1, b2x2, b2y2),
except_for={'aten::size', 'prim::BroadcastSizes', 'aten::_size_if_not_equal'})
with enable_profiling_mode_for_profiling_tests(True):
c = s(b1x1, b1y1, b1x2, b1y2, b2x1, b2y1, b2x2, b2y2)
warmup_backward(c.sum(), [b1x1, b1y1, b1x2, b1y2, b2x1, b2y1, b2x2, b2y2])
graph = backward_graph(s)
self.assertAllFused(graph, except_for={'aten::size', 'prim::BroadcastSizes', 'aten::_size_if_not_equal'})
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@unittest.skipIf(not RUN_CUDA_MULTI_GPU, "needs non-zero device")
@enable_cpu_fuser
def test_fusion_reuse_multi_gpu(self):
def fn(x, y):
return x * y * x * y
inputs_cpu = [
torch.randn(4, 4, dtype=torch.float),
torch.randn(4, 4, dtype=torch.float),
]
inputs_cuda0 = [x.cuda(0) for x in inputs_cpu]
inputs_cuda1 = [y.cuda(1) for y in inputs_cpu]
# Should not crash; these should compile different kernels.
ge = self.checkScript(fn, inputs_cpu)
self.assertAllFused(ge.graph_for(*inputs_cpu))
ge(*inputs_cuda0)
ge(*inputs_cuda1)
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@unittest.skipIf(not RUN_CUDA_MULTI_GPU, "needs non-zero device")
@enable_cpu_fuser
def test_kernel_cache_multi_gpu(self):
def not_fusible(x):
return x
def fn(x, y, z):
x_out = x * x * x * x * x # fusion: lambda x. x * x * x * x * x
y_out = y * y * y * y * y
z_out = z * z * z * z * z
return not_fusible(x_out), not_fusible(y_out), not_fusible(z_out)
inputs = [
torch.randn(4, 4, dtype=torch.float),
torch.randn(4, 4, dtype=torch.float, device='cuda:0'),
torch.randn(4, 4, dtype=torch.float, device='cuda:1'),
]
prev_cache_size = torch._C._jit_debug_fuser_num_cached_kernel_specs()
# There are 3 FusionGroups. Because they have the same graph, they
# should reuse the same KernelSpec in the KernelSpec cache.
ge = self.checkScript(fn, inputs)
self.assertGraphContainsExactly(
ge.graph_for(*inputs), 'prim::FusionGroup', 3, True)
new_cache_size = torch._C._jit_debug_fuser_num_cached_kernel_specs()
# XXX: This assumes that the same kernel isn't already used by another test
self.assertEqual(new_cache_size - prev_cache_size, 1)
@unittest.skipIf(not RUN_CUDA_MULTI_GPU, "needs non-zero device")
def test_nonzero_device_cuda(self):
device = 'cuda:' + str(1)
x = torch.tensor([0.4], dtype=torch.float, device=device)
y = torch.tensor([0.7], dtype=torch.float, device=device)
def doit(x, y):
return torch.sigmoid(torch.tanh(x * (x + y) + x))
ge = self.checkTrace(doit, (x, y))
self.assertAllFused(ge.graph_for(x, y))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_lstm_cuda(self):
inputs = get_lstm_inputs('cuda', training=True)
module = self.checkScript(LSTMCellS, inputs)
return
forward_graph = module.graph_for(*inputs)
self.assertGraphContainsExactly(
forward_graph, 'prim::FusionGroup', 1, consider_subgraphs=True)
self.assertTrue(len(strip_profiling_nodes(forward_graph.nodes())) == 2)
# Everything is differentiable but TupleConstruct return
FileCheck().check("DifferentiableGraph").check_next("TupleConstruct") \
.check_next("return").run(str(forward_graph))
with enable_profiling_mode_for_profiling_tests(True):
hy, cy = module(*inputs)
warmup_backward((hy + cy).sum())
backward = backward_graph(module)
self.assertAllFused(backward, except_for=("aten::t", "aten::mm",
"aten::_grad_sum_to_size"))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
# By default, on Ampere or later GPUs, LSTM computes float tensors at TF32 precision.
# We want float tensors to be computed at full precision in order to use the default precision
@with_tf32_off
def test_lstm_concat_cuda(self):
inputs = get_lstm_inputs('cuda')
ge = self.checkTrace(LSTMCellC, inputs)
graph = ge.graph_for(*inputs)
FileCheck().check("FusedConcat").check_next("return").run(str(graph))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_lstm_gates_permutations_cuda(self):
# lstm has gates = x.mm(w_ih.t()) + hx.mm(w_hh.t()) + b_ih + b_hh.
# Test that any permutation of this will still result in one FusionGroup.
choices = ['x.mm(w_ih.t())', 'hx.mm(w_hh.t())', 'b_ih', 'b_hh']
template = dedent('''
def cell(x, hx, cx, w_ih, w_hh, b_ih, b_hh):
gates = {} + {} + {} + {}
ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
return ingate * forgetgate * cellgate * outgate
''')
for permutation in permutations(choices, len(choices)):
code = template.format(*permutation)
scope = {}
exec(code, globals(), scope)
cu = torch.jit.CompilationUnit(code)
inputs = get_lstm_inputs('cuda', training=False)
self.assertEqual(cu.cell(*inputs), scope['cell'](*inputs))
forward_graph = cu.cell.graph_for(*inputs)
self.assertGraphContainsExactly(forward_graph, 'prim::FusionGroup', 1)
# TODO: Fuser doesn't work at all when inputs require grad. Fix that
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
# By default, on Ampere or later GPUs, LSTM computes float tensors at TF32 precision.
# We want float tensors to be computed at full precision in order to use the default precision
@with_tf32_off
def test_lstm_traced_cuda(self):
inputs = get_lstm_inputs('cuda')
ge = self.checkTrace(LSTMCellF, inputs)
graph = ge.graph_for(*inputs)
# .check_not("aten::add") don't get pulled into FusionGroup because of BailOuts
FileCheck().check_not("Chunk").check_not("aten::sigmoid") \
.check_not("aten::tanh").check("FusionGroup").check_next("TupleConstruct") \
.check_next("return").check_not("FusionGroup_2").run(str(graph))
@unittest.skipIf(IS_SANDCASTLE, "NYI: fuser CPU support for Sandcastle")
@unittest.skip("Test is flaky, see https://github.com/pytorch/pytorch/issues/8746")
@enable_cpu_fuser
def test_lstm_traced_cpu(self):
inputs = get_lstm_inputs('cpu')
try:
ge = self.checkTrace(LSTMCellF, inputs)
graph = ge.graph_for(*inputs)
FileCheck.check("FusionGroup").run(str(graph))
except RuntimeError as e:
if 'Failed to compile' in e.args[0]:
warnings.warn('CPU fuser test has failed! This is not a hard failure, '
'because the kernels sometimes trigger bugs in compilers '
'(most notably GCC 7.2).')
raise unittest.SkipTest('Failed to compile') from e
else:
raise
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_milstm_cuda(self):
inputs = get_milstm_inputs('cuda', training=True)
module = self.checkScript(MiLSTMCell, inputs)
forward_graph = module.graph_for(*inputs)
self.assertGraphContainsExactly(
forward_graph, 'prim::FusionGroup', 1, consider_subgraphs=True)
FileCheck().check("DifferentiableGraph").check_next("TupleConstruct") \
.check_next("return").check("FusionGroup").run(str(forward_graph))
hy, cy = module(*inputs)
warmup_backward((hy + cy).sum())
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR == ProfilingMode.LEGACY, "borked on the legacy executor")
def test_rand_cuda(self):
class M(torch.jit.ScriptModule):
__constants__ = ['d']
def __init__(self):
super(M, self).__init__()
self.d = torch.device('cuda')
@torch.jit.script_method
def create(self, x):
return x * x + x + torch.rand_like(x)
x = torch.zeros([3, 4, 5], dtype=torch.float, device='cuda')
m = M()
out1 = m.create(x)
out2 = m.create(x)
self.assertNotEqual(out1, out2)
self.assertTrue(torch.all(out1 >= 0))
self.assertTrue(torch.all(out1 < 1))
self.assertTrue(torch.all(out2 >= 0))
self.assertTrue(torch.all(out2 < 1))
self.assertAllFused(m.create.graph_for(x))
@staticmethod
def fn_test_relu(x, y):
return F.relu(x + .5 * y)
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_relu_cuda(self):
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
y = torch.randn(4, 4, dtype=torch.float, device='cuda')
ge = self.checkTrace(self.fn_test_relu, (x, y))
self.assertAllFused(ge.graph_for(x, y))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_erf_cuda(self):
def fn_test_erf(x):
return F.relu(torch.erf(x) - torch.erfc(x))
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
ge = self.checkTrace(fn_test_erf, (x,))
self.assertAllFused(ge.graph_for(x))
x.requires_grad_(True)
ge = self.checkTrace(fn_test_erf, (x,))
self.assertAllFused(ge.graph_for(x), except_for=("aten::size", "prim::BroadcastSizes",
"aten::_size_if_not_equal"))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR == ProfilingMode.LEGACY, "borked on the legacy executor")
def test_rand_broadcast_cuda(self):
def fn_test_rand(x, y):
r = torch.rand_like(y)
return r * x + x
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
y = torch.randn(4, 4, dtype=torch.float, device='cuda')
script_f = torch.jit.script(fn_test_rand)
out = script_f(x, y)
self.assertAllFused(script_f.graph_for(x, y))
x.requires_grad_(True)
out = script_f(x, y)
self.assertAllFused(script_f.graph_for(x, y), except_for=("aten::size", "prim::BroadcastSizes",
"aten::_size_if_not_equal"))
# test that broadcasting random produces correct results
x = torch.ones(4, 4, dtype=torch.float, device='cuda')
y = torch.ones(4, dtype=torch.float, device='cuda')
out = script_f(x, y)
self.assertEqual(out[0], out[1])
@unittest.skipIf(IS_SANDCASTLE, "NYI: fuser CPU support for Sandcastle")
@enable_cpu_fuser
def test_scalar(self):
def fn(x, y):
return 2 * x + y
x = torch.tensor(0.1, dtype=torch.float, device='cpu')
y = torch.tensor(1, dtype=torch.float, device='cpu')
ge = self.checkScript(fn, (x, y))
self.assertAllFused(ge.graph_for(x, y))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_small_constant_cuda(self):
def fn_test_small_constant(x, y):
return (1e-8 * x + 5e-9 * y) * 1e8
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
y = torch.randn(4, 4, dtype=torch.float, device='cuda')
ge = self.checkTrace(fn_test_small_constant, (x, y))
self.assertAllFused(ge.graph_for(x, y))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_tensor_scalar_ops_cuda(self):
def should_fuse(x):
z = 3.
y = x + z
return x * y
# XXX: right now we only support fusing scalars if
# they're constant (#9940)
def should_not_fuse(x, z):
y = x + int(z)
return x * y
inputs = [torch.randn(2, 2, dtype=torch.float, device='cuda')]
ge = self.checkScript(should_fuse, inputs)
self.assertAllFused(ge.graph_for(*inputs))
inputs = [
torch.randn(2, 2, dtype=torch.float, device='cuda'),
torch.tensor(3., dtype=torch.float, device='cuda'),
]
ge = self.checkScript(should_not_fuse, inputs)
self.assertGraphContainsExactly(
ge.graph_for(*inputs), 'prim::FusionGroup', 0, consider_subgraphs=True)
@unittest.skipIf(IS_SANDCASTLE, "NYI: fuser CPU support for Sandcastle")
@enable_cpu_fuser
def test_where_and_typing(self):
def f(x, y):
mask = x > y
res = torch.where(mask, x, y)
return mask, res
x = torch.randn(4, 4, dtype=torch.double)
y = torch.randn(4, 4, dtype=torch.double)
script_f = self.checkScript(f, (x, y))
self.assertAllFused(script_f.graph_for(x, y), except_for={'prim::TupleConstruct'})
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.LEGACY, "no half support with profiling on")
def test_grad_sum_to_size_elimination(self):
def my_broadcasted_cell(a, b, c):
return (a + b) + c
s1 = torch.randn(5, 1, requires_grad=True, device='cuda')
s2 = torch.randn(5, 5, requires_grad=True, device='cuda')
module = self.checkScript(my_broadcasted_cell, (s1, s1, s1), profiling=ProfilingMode.PROFILING)
forward_graph = module.graph_for(s1, s1, s1)
self.assertAllFused(forward_graph, except_for=("aten::size", "prim::BroadcastSizes",
"aten::_size_if_not_equal"))
old_plans = set()
for i in range(3):
# if we have s2, then the s1 are _grad_sum_to_size'd
args = s2 if i < 1 else s1, s2 if i < 2 else s1, s2
args = [a.detach_().requires_grad_() for a in args]
# recompile, so we don't trigger bailouts
module = self.checkScript(my_broadcasted_cell, args, profiling=ProfilingMode.PROFILING)
res = module(s2 if i < 1 else s1, s2 if i < 2 else s1, s2)
warmup_backward(res.sum(), args)
grads = torch.autograd.grad(res.sum(), args)
for inp, gr in zip(args, grads):
self.assertEqual(inp.shape, gr.shape)
backward = None
# this is a workaround for the backward graphs not being
# in order for Python 2
for g in all_backward_graphs(module):
if str(g) not in old_plans:
assert backward is None
backward = g
old_plans.add(str(backward))
num_grads = 1 if i > 0 else 0
self.assertEqual(len([n for n in backward.nodes() if n.kind() == 'aten::_grad_sum_to_size']), num_grads)
if __name__ == '__main__':
run_tests()