forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_autocast.py
134 lines (111 loc) · 6.55 KB
/
test_autocast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Owner(s): ["module: unknown"]
import collections
import torch
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.testing._internal.autocast_test_lists import AutocastCPUTestLists
class TestAutocastCPU(TestCase):
def setUp(self):
super(TestAutocastCPU, self).setUp()
self.autocast_lists = AutocastCPUTestLists(torch.device('cpu'))
def tearDown(self):
del self.autocast_lists
super(TestAutocastCPU, self).tearDown()
def _run_autocast_outofplace(self, op, args, run_as_type, out_type=None, module=torch, add_kwargs=None):
# helper to cast args
def cast(val, to_type):
if isinstance(val, torch.Tensor):
return val.to(to_type) if val.is_floating_point() else val
elif isinstance(val, collections.abc.Iterable):
return type(val)(cast(v, to_type) for v in val)
else:
return val
if add_kwargs is None:
add_kwargs = {}
self.assertFalse(torch.is_autocast_cpu_enabled())
with torch.cpu.amp.autocast():
self.assertTrue(torch.is_autocast_cpu_enabled())
out_type = out_type if out_type is not None else run_as_type
output = output_method = None
# Try module.* variant, if requested:
if module is not None and hasattr(module, op):
output = getattr(module, op)(*args, **add_kwargs)
if isinstance(output, torch.Tensor):
self.assertTrue(out_type == output.dtype,
"autocast for torch.{} produced {}, should produce {}"
.format(op, output.dtype, out_type))
# Try Tensor.* variant:
if hasattr(torch.Tensor, op):
output_method = getattr(args[0], op)(*args[1:], **add_kwargs)
if isinstance(output_method, torch.Tensor):
self.assertTrue(out_type == output_method.dtype,
"autocast for torch.{} produced {}, should produce torch.{}"
.format(op, output_method.dtype, out_type))
self.assertTrue((output is not None) or (output_method is not None),
"{} not found as an attribute on either Tensor or the requested module {}".format(
op, module))
# Accounts for ops that return Tensors, iterables, and other non-Tensors.
# For example, lstm_cell returns a tuple and equal returns bool.
def compare(first, second):
if isinstance(first, torch.Tensor):
return torch.equal(first, second)
elif isinstance(first, collections.abc.Iterable):
return all(compare(f, s) for f, s in zip(first, second))
else:
return first == second
# If both torch.* and Tensor.* variants were found, check outputs are identical
if (output is not None) and (output_method is not None):
self.assertTrue(type(output) == type(output_method))
comparison = compare(output, output_method)
self.assertTrue(comparison, "torch.{0} result did not match Tensor.{0} result".format(op))
# Compare numerics to Python-side "autocasting" that (we expect) does the same thing
# as the C++-side autocasting, and should be bitwise accurate.
output_to_compare = output if output is not None else output_method
with torch.cpu.amp.autocast(enabled=False):
self.assertFalse(torch.is_autocast_cpu_enabled())
if module is not None and hasattr(module, op):
control = getattr(module, op)(*cast(args, run_as_type), **add_kwargs)
else:
control = getattr(args[0].to(run_as_type), op)(*cast(args[1:], run_as_type), **add_kwargs)
self.assertTrue(type(output_to_compare) == type(control))
comparison = compare(output_to_compare, control)
self.assertTrue(comparison, "torch.{} result did not match control".format(op))
self.assertTrue(torch.is_autocast_cpu_enabled())
self.assertFalse(torch.is_autocast_cpu_enabled())
def args_maybe_kwargs(self, op_with_args):
if len(op_with_args) == 2:
return op_with_args[0], op_with_args[1], {}
else:
return op_with_args[0], op_with_args[1], op_with_args[2]
def test_autocast_torch_expect_builtin_promote(self):
for op, args, out_type in self.autocast_lists.torch_expect_builtin_promote:
self._run_autocast_outofplace(op, args, torch.float32, out_type=out_type)
def test_autocast_methods_expect_builtin_promote(self):
for op, args, out_type in self.autocast_lists.methods_expect_builtin_promote:
self._run_autocast_outofplace(op, args, torch.float32, module=None, out_type=out_type)
def test_autocast_torch_bf16(self):
for op_with_args in self.autocast_lists.torch_bf16:
op, args, maybe_kwargs = self.args_maybe_kwargs(op_with_args)
self._run_autocast_outofplace(op, args, torch.bfloat16, add_kwargs=maybe_kwargs)
def test_autocast_nn_bf16(self):
for op_with_args in self.autocast_lists.nn_bf16:
op, args, maybe_kwargs = self.args_maybe_kwargs(op_with_args)
self._run_autocast_outofplace(op, args, torch.bfloat16, module=torch._C._nn, add_kwargs=maybe_kwargs)
def test_autocast_torch_fp32(self):
for op_with_args in self.autocast_lists.torch_fp32:
op, args, maybe_kwargs = self.args_maybe_kwargs(op_with_args)
self._run_autocast_outofplace(op, args, torch.float32, add_kwargs=maybe_kwargs)
def test_autocast_nn_fp32(self):
for op_with_args in self.autocast_lists.nn_fp32:
op, args, maybe_kwargs = self.args_maybe_kwargs(op_with_args)
self._run_autocast_outofplace(op, args, torch.float32, module=torch._C._nn, add_kwargs=maybe_kwargs)
def test_autocast_torch_need_autocast_promote(self):
for op, args in self.autocast_lists.torch_need_autocast_promote:
self._run_autocast_outofplace(op, args, torch.float32)
class TestTorchAutocast(TestCase):
def test_autocast_fast_dtype(self):
gpu_fast_dtype = torch.get_autocast_gpu_dtype()
cpu_fast_dtype = torch.get_autocast_cpu_dtype()
self.assertEqual(gpu_fast_dtype, torch.half)
self.assertEqual(cpu_fast_dtype, torch.bfloat16)
if __name__ == '__main__':
run_tests()