forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMaxMinElementwiseKernel.cu
98 lines (90 loc) · 3.35 KB
/
MaxMinElementwiseKernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#define TORCH_ASSERT_NO_OPERATORS
#include <ATen/AccumulateType.h>
#include <ATen/Dispatch.h>
#include <ATen/native/BinaryOps.h>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/cuda/Loops.cuh>
// NOTE: CUDA on Windows requires that the enclosing function
// of a __device__ lambda not have internal linkage.
namespace at { namespace native {
void maximum_kernel_cuda(TensorIteratorBase& iter) {
if (iter.dtype() == ScalarType::Bool) {
opmath_symmetric_gpu_kernel_with_scalars<bool>(
iter, []GPU_LAMBDA(bool a, bool b) -> bool {
return a || b;
});
} else if (isIntegralType(iter.dtype(), /*includeBool=*/ false)) {
AT_DISPATCH_INTEGRAL_TYPES(iter.dtype(), "max_elementwise_cuda", [&]() {
opmath_symmetric_gpu_kernel_with_scalars<scalar_t>(
iter, []GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t {
return ::max(a, b);
});
});
} else {
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "max_elementwise_cuda", [&]() {
opmath_symmetric_gpu_kernel_with_scalars<scalar_t>(
iter, []GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t {
if (a != a) {
return a;
} else if (b != b) {
return b;
} else {
return ::max(a, b);
}
});
});
}
}
void minimum_kernel_cuda(TensorIteratorBase& iter) {
if (iter.dtype() == ScalarType::Bool) {
opmath_symmetric_gpu_kernel_with_scalars<bool>(iter, []GPU_LAMBDA(bool a, bool b) -> bool {
return a && b;
});
} else if (isIntegralType(iter.dtype(), /*includeBool=*/ false)) {
AT_DISPATCH_INTEGRAL_TYPES(iter.dtype(), "minimum_cuda", [&]() {
opmath_symmetric_gpu_kernel_with_scalars<scalar_t>(iter, []GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t {
return ::min(a, b);
});
});
} else {
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "min_elementwise_cuda", [&]() {
opmath_symmetric_gpu_kernel_with_scalars<scalar_t>(iter, []GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t {
if (a != a) {
return a;
} else if (b != b) {
return b;
} else {
return ::min(a, b);
}
});
});
}
}
void fmax_kernel_cuda(TensorIteratorBase& iter) {
if (isFloatingType(iter.common_dtype())) {
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.common_dtype(), "fmax_cuda", [&]() {
opmath_symmetric_gpu_kernel_with_scalars<scalar_t>(iter, []GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t {
return ::fmax(a, b);
});
});
} else {
maximum_kernel_cuda(iter);
}
}
void fmin_kernel_cuda(TensorIteratorBase& iter) {
if (isFloatingType(iter.common_dtype())) {
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.common_dtype(), "fmin_cuda", [&]() {
opmath_symmetric_gpu_kernel_with_scalars<scalar_t>(iter, []GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t {
return ::fmin(a, b);
});
});
} else {
minimum_kernel_cuda(iter);
}
}
REGISTER_DISPATCH(maximum_stub, &maximum_kernel_cuda);
REGISTER_DISPATCH(minimum_stub, &minimum_kernel_cuda);
REGISTER_DISPATCH(fmax_stub, &fmax_kernel_cuda);
REGISTER_DISPATCH(fmin_stub, &fmin_kernel_cuda);
}} // namespace at::native