forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSoftMaxKernel.cpp
812 lines (758 loc) · 33.6 KB
/
SoftMaxKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/native/cpu/SoftmaxKernel.h>
#include <algorithm>
#include <iterator>
#include <numeric>
#include <ATen/Dispatch.h>
#include <ATen/Parallel.h>
#include <ATen/TensorIterator.h>
#include <ATen/core/Tensor.h>
#include <ATen/cpu/vec/functional.h>
#include <ATen/cpu/vec/vec.h>
#include <c10/util/Optional.h>
#include <c10/util/irange.h>
// [Note AVX-SSE transitions] In general we avoid calls into cmath for code
// compiled with AVX/AVX2 This is because of SSE-AVX transitions and a bug in
// Glibc2.23 See https://bugs.launchpad.net/ubuntu/+source/glibc/+bug/1663280
//
// On grainsize: The grainsize is chosen to roughly get GRAIN_SIZE number of
// computations per task. Each task works across dim_size elements. 16 should be
// a very rough approximation of the number of computations per dim_size element
// by counting simple computations (*, +, -) as 1 and exp or log as 4.
namespace at { namespace native {
namespace {
template <typename scalar_t>
inline void _vec_log_softmax_lastdim(
scalar_t* input_data_base,
scalar_t* output_data_base,
int64_t outer_size,
int64_t dim_size) {
using Vec = vec::Vectorized<vec::vec_scalar_t<scalar_t>>;
static constexpr int64_t CHUNK_SIZE = (128 / sizeof(scalar_t)) * Vec::size();
int64_t grain_size = internal::GRAIN_SIZE / (16 * dim_size * CHUNK_SIZE);
if (grain_size < CHUNK_SIZE)
grain_size = CHUNK_SIZE;
parallel_for(
0,
outer_size,
grain_size,
[&](int64_t begin, int64_t end) {
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
scalar_t tmp_sum_scalar[CHUNK_SIZE];
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
scalar_t max_input_arr[CHUNK_SIZE];
for (int64_t ii = begin; ii < end; ii += CHUNK_SIZE) {
int64_t loop_end = CHUNK_SIZE;
if (ii + CHUNK_SIZE > end)
loop_end = end - ii;
for (const auto j : c10::irange(loop_end)) {
int64_t i = ii + j;
scalar_t* input_data = input_data_base + i * dim_size;
max_input_arr[j] = vec::reduce_all<scalar_t>(
[](Vec& x, Vec& y) { return vec::maximum(x, y); },
input_data,
dim_size);
}
for (const auto j : c10::irange(loop_end)) {
int64_t i = ii + j;
scalar_t* input_data = input_data_base + i * dim_size;
scalar_t max_input = max_input_arr[j];
tmp_sum_scalar[j] = vec::map_reduce_all<scalar_t>(
[max_input](Vec x) { return (x - Vec(max_input)).exp(); },
[](Vec x, Vec y) { return x + y; },
input_data,
dim_size);
}
// See [Note AVX-SSE transitions] for why this should call the
// vectorized version (aside from perf improvements).
vec::map(
[](Vec x) { return x.log(); },
tmp_sum_scalar,
tmp_sum_scalar,
loop_end);
for (const auto j : c10::irange(loop_end)) {
int64_t i = ii + j;
scalar_t* input_data = input_data_base + i * dim_size;
scalar_t* output_data = output_data_base + i * dim_size;
scalar_t tmp_sum = tmp_sum_scalar[j];
scalar_t max_input = max_input_arr[j];
// It's necessary to keep the order of the operations below.
// In some cases that input is large digits and the difference
// is small, if we compute `max_input` plus `tmp_sum` before,
// there would be a numerical problem. See an example in
// https://github.com/pytorch/pytorch/issues/11752#issuecomment-422883379
vec::map(
[tmp_sum, max_input](Vec x) { return x - Vec(max_input) - Vec(tmp_sum); },
output_data,
input_data,
dim_size);
}
}
});
}
template <typename scalar_t>
inline void _vec_softmax_lastdim(
scalar_t* input_data_base,
scalar_t* output_data_base,
int64_t outer_size,
int64_t dim_size) {
using Vec = vec::Vectorized<scalar_t>;
int64_t grain_size = std::max(internal::GRAIN_SIZE / (16 * dim_size), (int64_t)1);
parallel_for(0, outer_size, grain_size, [&](int64_t begin, int64_t end) {
for (const auto i : c10::irange(begin, end)) {
scalar_t* input_data = input_data_base + i * dim_size;
scalar_t* output_data = output_data_base + i * dim_size;
scalar_t max_input = vec::reduce_all<scalar_t>(
[](Vec& x, Vec& y) { return vec::maximum(x, y); },
input_data,
dim_size);
vec::map(
[max_input](Vec x) { return (x - Vec(max_input)).exp(); },
output_data,
input_data,
dim_size);
scalar_t tmp_sum = vec::reduce_all<scalar_t>(
[](Vec x, Vec y) { return x + y; }, output_data, dim_size);
tmp_sum = 1 / tmp_sum;
vec::map(
[tmp_sum](Vec x) { return x * Vec(tmp_sum); },
output_data,
output_data,
dim_size);
}
});
}
template <>
inline void _vec_softmax_lastdim<BFloat16>(
BFloat16* input_data_base,
BFloat16* output_data_base,
int64_t outer_size,
int64_t dim_size) {
using bVec = vec::Vectorized<BFloat16>;
using fVec = vec::Vectorized<float>;
int64_t grain_size = std::max(internal::GRAIN_SIZE / (16 * dim_size), (int64_t)1);
parallel_for(0, outer_size, grain_size, [&](int64_t begin, int64_t end) {
// thread local temp buffer.
std::unique_ptr<float []> buffer(new float[dim_size]);
float* buffer_data = buffer.get();
for (const auto i : c10::irange(begin, end)) {
BFloat16* input_data = input_data_base + i * dim_size;
BFloat16* output_data = output_data_base + i * dim_size;
// reduce to max and cache float input data
fVec max_fvec = fVec(-std::numeric_limits<float>::infinity());
int64_t d0 = 0;
for (; d0 < dim_size - (dim_size % bVec::size()); d0 += bVec::size()) {
bVec data_bvec = bVec::loadu(input_data + d0);
fVec data_fvec0, data_fvec1;
std::tie(data_fvec0, data_fvec1) = convert_bfloat16_float(data_bvec);
max_fvec = vec::maximum(max_fvec, data_fvec0);
max_fvec = vec::maximum(max_fvec, data_fvec1);
data_fvec0.store(buffer_data + d0);
data_fvec1.store(buffer_data + d0 + fVec::size());
}
float max_val = vec::vec_reduce_all([](fVec& x, fVec& y) { return vec::maximum(x, y); }, max_fvec);
for (; d0 < dim_size; d0++) {
float data_val = input_data[d0];
max_val = std::max(max_val, data_val);
buffer_data[d0] = data_val;
}
// map (x - max).exp() and reduce to sum
fVec sum_fvec = fVec(float(0));
int64_t d1 = 0;
for (; d1 < dim_size - (dim_size % fVec::size()); d1 += fVec::size()) {
fVec data_fvec = (fVec::loadu(buffer_data + d1) - fVec(max_val)).exp();
sum_fvec += data_fvec;
data_fvec.store(buffer_data + d1);
}
float sum_val = vec::vec_reduce_all([](fVec& x, fVec& y) { return x + y; }, sum_fvec);
for (; d1 < dim_size; d1++) {
float data_val = std::exp(buffer_data[d1] - max_val);
sum_val += data_val;
buffer_data[d1] = data_val;
}
sum_val = 1 / sum_val;
int64_t d2 = 0;
for (; d2 < dim_size - (dim_size % bVec::size()); d2 += bVec::size()) {
fVec out_fvec0 = fVec::loadu(buffer_data + d2) * fVec(sum_val);
fVec out_fvec1 = fVec::loadu(buffer_data + d2 + fVec::size()) * fVec(sum_val);
bVec out_bvec = convert_float_bfloat16(out_fvec0, out_fvec1);
out_bvec.store(output_data + d2);
}
for (; d2 < dim_size; d2++) {
output_data[d2] = BFloat16(buffer_data[d2] * sum_val);
}
}
});
}
template <typename scalar_t, bool log_softmax>
inline void _vec_host_softmax_backward_lastdim(
scalar_t* grad_input_data_base,
scalar_t* grad_data_base,
scalar_t* output_data_base,
int64_t outer_size,
int64_t dim_size) {
using Vec = vec::Vectorized<vec::vec_scalar_t<scalar_t>>;
int64_t grain_size = internal::GRAIN_SIZE / (16 * dim_size);
if (grain_size < 1)
grain_size = 1;
parallel_for(
0,
outer_size,
grain_size,
[&](int64_t begin, int64_t end) {
for (const auto i : c10::irange(begin, end)) {
scalar_t* grad_input_data = grad_input_data_base + i * dim_size;
scalar_t* grad_data = grad_data_base + i * dim_size;
scalar_t* output_data = output_data_base + i * dim_size;
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
scalar_t sum;
if (log_softmax) {
sum = vec::reduce_all<scalar_t>(
[](Vec& x, Vec& y) { return x + y; }, grad_data, dim_size);
} else {
sum = vec::map2_reduce_all<scalar_t>(
[](Vec x, Vec y) { return x * y; },
[](Vec x, Vec y) { return x + y; },
grad_data,
output_data,
dim_size);
}
if (log_softmax) {
vec::map2(
[sum](Vec x, Vec y) { return x - ((y.exp()) * Vec(sum)); },
grad_input_data,
grad_data,
output_data,
dim_size);
} else {
vec::map2(
[sum](Vec x, Vec y) { return (x - Vec(sum)) * y; },
grad_input_data,
grad_data,
output_data,
dim_size);
}
}
});
}
template <typename scalar_t, bool LogSoftMax>
struct vec_host_softmax_lastdim {
static void apply(const Tensor& output, const Tensor& input) {
int64_t outer_size = 1;
int64_t dim_size = input.size(input.ndimension() - 1);
for (int64_t i = 0; i < input.ndimension() - 1; ++i)
outer_size *= input.size(i);
scalar_t* input_data_base = input.data_ptr<scalar_t>();
scalar_t* output_data_base = output.data_ptr<scalar_t>();
if (LogSoftMax) {
_vec_log_softmax_lastdim(
input_data_base, output_data_base, outer_size, dim_size);
} else {
_vec_softmax_lastdim(
input_data_base, output_data_base, outer_size, dim_size);
}
}
};
inline void _vec_softmax(
BFloat16* input_data_base,
BFloat16* output_data_base,
int64_t outer_size,
int64_t inner_size,
int64_t dim_size) {
using Vec = vec::Vectorized<float>;
using Vec_bf16 = vec::Vectorized<BFloat16>;
int64_t dim_stride = inner_size;
int64_t outer_stride = dim_size * dim_stride;
int64_t grain_size = std::min(internal::GRAIN_SIZE / dim_size, (int64_t)1);
int vectorized_step = Vec_bf16().size(); // Currently, we only support BFloat16 in this special implementation
parallel_for(
0, outer_size * inner_size, grain_size, [&](int64_t begin, int64_t end) {
int64_t idx = begin;
std::unique_ptr<float[]> temp_vec_input(new float[dim_size*vectorized_step*2]());
std::unique_ptr<float[]> temp_vec_output(new float[dim_size*vectorized_step*2]());
float* temp_vec_input_data = temp_vec_input.get();
float* temp_vec_output_data = temp_vec_output.get();
while (idx < end) {
int64_t outer_idx = idx / inner_size;
int64_t inner_idx = idx % inner_size;
if (((inner_idx + vectorized_step) <= inner_size) && ((idx + vectorized_step) <= end)) {
// Vectorization
BFloat16* input_data =
input_data_base + outer_idx * outer_stride + inner_idx;
BFloat16* output_data =
output_data_base + outer_idx * outer_stride + inner_idx;
// Step 1: Get max Score
Vec_bf16 max_vec_bf16 = Vec_bf16::loadu(input_data);
std::tuple<vec::Vectorized<float>, vec::Vectorized<float>> convert_result = convert_bfloat16_float(max_vec_bf16);
Vec max_vec_o1 = std::get<0>(convert_result);
Vec max_vec_o2 = std::get<1>(convert_result);
std::get<0>(convert_result).store(temp_vec_input_data);
std::get<1>(convert_result).store(temp_vec_input_data + vectorized_step);
for (const auto d : c10::irange(1, dim_size)) {
Vec_bf16 input_vec_bf16 = Vec_bf16::loadu(input_data + d * dim_stride);
convert_result = convert_bfloat16_float(input_vec_bf16);
max_vec_o1 = vec::maximum(max_vec_o1, std::get<0>(convert_result));
max_vec_o2 = vec::maximum(max_vec_o2, std::get<1>(convert_result));
std::get<0>(convert_result).store(temp_vec_input_data + d*vectorized_step*2);
std::get<1>(convert_result).store(temp_vec_input_data + d*vectorized_step*2 + vectorized_step);
}
// Step2: Calculate sum
Vec sum_vec_o1 = Vec(0.0);
Vec sum_vec_o2 = Vec(0.0);
for (const auto d : c10::irange(dim_size)) {
Vec output_vec_o1 = Vec::loadu(temp_vec_input_data + d*vectorized_step*2);
Vec output_vec_o2 = Vec::loadu(temp_vec_input_data + d*vectorized_step*2 + vectorized_step);
output_vec_o1 = (output_vec_o1 - max_vec_o1).exp();
output_vec_o2 = (output_vec_o2 - max_vec_o2).exp();
output_vec_o1.store(temp_vec_output_data + d*vectorized_step*2);
output_vec_o2.store(temp_vec_output_data + d*vectorized_step*2 + vectorized_step);
sum_vec_o1 = sum_vec_o1 + output_vec_o1;
sum_vec_o2 = sum_vec_o2 + output_vec_o2;
}
// Step3: Unify
for (const auto d : c10::irange(dim_size)) {
Vec output_vec_o1 = Vec::loadu(temp_vec_output_data + d*vectorized_step*2);
Vec output_vec_o2 = Vec::loadu(temp_vec_output_data + d*vectorized_step*2 + vectorized_step);
output_vec_o1 = output_vec_o1/sum_vec_o1;
output_vec_o2 = output_vec_o2/sum_vec_o2;
Vec_bf16 output_vec_bf16 = convert_float_bfloat16(output_vec_o1, output_vec_o2);
output_vec_bf16.store(output_data + d * dim_stride);
}
idx += vectorized_step;
} else {
// Tail case(Scalar): it is exactly same logic as host_softmax
// inside aten/src/ATen/native/SoftMax.cpp. There are 2 kind of
// cases which will fall through this part:
// Case 1: For the idx at the end of total chunk for each thread, there are not enough numbers for parallization.
// Case 2: For the idx at the end of each inner_size inside thread, there are not enough numbers for parallization.
int64_t tail_number = ((idx+vectorized_step) > end) ? /*Case1*/ (end - idx) : /*Case2*/ (inner_size - inner_idx);
for (const auto i : c10::irange(tail_number)) {
outer_idx = (idx + i) / inner_size;
inner_idx = (idx + i) % inner_size;
BFloat16* input_data =
input_data_base + outer_idx * outer_stride + inner_idx;
BFloat16* output_data =
output_data_base + outer_idx * outer_stride + inner_idx;
// Step1: Get max score
float max_input = float(input_data[0]);
for (const auto d : c10::irange(1, dim_size)) {
max_input = std::max(max_input, float(input_data[d * dim_stride]));
}
// Step2: Calculate the Sum
float sum_data = 0.0;
float temp_output_data = 0.0;
for (const auto d : c10::irange(dim_size)) {
temp_output_data = std::exp(input_data[d * dim_stride] - max_input);
sum_data += temp_output_data;
output_data[d * dim_stride] = c10::BFloat16(temp_output_data);
}
// Step3: Unify
for (const auto d : c10::irange(dim_size)) {
output_data[d * dim_stride] =
c10::BFloat16(float(output_data[d * dim_stride])/sum_data);
}
}
idx += tail_number;
}
}
});
}
template <typename scalar_t>
inline void _vec_softmax(
scalar_t* input_data_base,
scalar_t* output_data_base,
int64_t outer_size,
int64_t inner_size,
int64_t dim_size) {
using Vec = vec::Vectorized<scalar_t>;
int64_t dim_stride = inner_size;
int64_t outer_stride = dim_size * dim_stride;
int64_t grain_size = std::min(internal::GRAIN_SIZE / dim_size, (int64_t)1);
int vectorized_step = Vec().size();
parallel_for(
0, outer_size * inner_size, grain_size, [&](int64_t begin, int64_t end) {
int64_t idx = begin;
while (idx < end) {
int64_t outer_idx = idx / inner_size;
int64_t inner_idx = idx % inner_size;
if (((inner_idx + vectorized_step) <= inner_size) && ((idx + vectorized_step) <= end)) {
// Vectorization
scalar_t* input_data =
input_data_base + outer_idx * outer_stride + inner_idx;
scalar_t* output_data =
output_data_base + outer_idx * outer_stride + inner_idx;
// Step 1: Get max Score
Vec max_vec = Vec::loadu(input_data);
for (const auto d : c10::irange(1, dim_size)) {
Vec input_vec = Vec::loadu(input_data + d * dim_stride);
max_vec = vec::maximum(max_vec, input_vec);
}
// Step2: Calculate sum
Vec sum_vec = Vec(0.0);
for (const auto d : c10::irange(dim_size)) {
Vec output_vec =
(Vec::loadu(input_data + d * dim_stride) - max_vec).exp();
output_vec.store(output_data + d * dim_stride);
sum_vec = sum_vec + output_vec;
}
// Step3: Unify
for (const auto d : c10::irange(dim_size)) {
Vec output_vec =
Vec::loadu(output_data + d * dim_stride) / sum_vec;
output_vec.store(output_data + d * dim_stride);
}
idx += vectorized_step;
} else {
// Tail case(Scalar): it is exactly same logic as host_softmax
// inside aten/src/ATen/native/SoftMax.cpp. There are 2 kind of
// cases which will fall through this part:
// Case 1: For the idx at the end of total chunk for each thread, there are not enough numbers for parallization.
// Case 2: For the idx at the end of each inner_size inside thread, there are not enough numbers for parallization.
int64_t tail_number = ((idx+vectorized_step) > end) ? /*Case1*/ (end - idx) : /*Case2*/ (inner_size - inner_idx);
for (const auto i : c10::irange(tail_number)) {
outer_idx = (idx + i) / inner_size;
inner_idx = (idx + i) % inner_size;
scalar_t* input_data =
input_data_base + outer_idx * outer_stride + inner_idx;
scalar_t* output_data =
output_data_base + outer_idx * outer_stride + inner_idx;
// Step1: Get max score
scalar_t max_input = input_data[0];
for (const auto d : c10::irange(1, dim_size)) {
max_input = std::max(max_input, input_data[d * dim_stride]);
}
// Step2: Calculate the Sum
scalar_t sum_data = 0;
for (const auto d : c10::irange(dim_size)) {
output_data[d * dim_stride] =
std::exp(input_data[d * dim_stride] - max_input);
sum_data += output_data[d * dim_stride];
}
// Step3: Unify
for (const auto d : c10::irange(dim_size)) {
output_data[d * dim_stride] =
output_data[d * dim_stride]/sum_data;
}
}
idx += tail_number;
}
}
});
}
// NB: fast kernel for log_softmax when dim != -1
// input shape is normalized to {outer_size, dim_size, inner_size}
//
// The algorithm requires to load input tensor 3 times, to increase parallelsim
// and cache hit rate, inner_size is blocked as:
// inner_size: {CHUNK_SIZE, CHUNK_SIZE, ..., Remainder}
//
// Parallel on {outer_size, num_chunks} and do vertical reduction on each block of
// {dim_size, CHUNK_SIZE}, block size (128KB) selected to be L2 hit.
//
template <typename scalar_t>
inline void _vec_logsoftmax(
scalar_t* input_data_base,
scalar_t* output_data_base,
int64_t outer_size,
int64_t inner_size,
int64_t dim_size) {
using Vec = vec::Vectorized<scalar_t>;
int64_t BLOCK_SIZE = 128 * 1024;
int64_t CHUNK_SIZE = std::max(int64_t(BLOCK_SIZE / dim_size / sizeof(scalar_t)), (int64_t) Vec::size());
CHUNK_SIZE = CHUNK_SIZE / Vec::size() * Vec::size();
int64_t num_chunks = divup(inner_size, CHUNK_SIZE);
int64_t grain_size = internal::GRAIN_SIZE / (16 * dim_size * CHUNK_SIZE);
at::parallel_for(0, outer_size * num_chunks, grain_size, [&](int64_t begin, int64_t end) {
// thread local temp buffer which holds vertical reduction result: max and sum.
std::unique_ptr<scalar_t []> buffer(new scalar_t[CHUNK_SIZE * 2]);
scalar_t* input_max_data = buffer.get();
scalar_t* tmp_sum_data = buffer.get() + CHUNK_SIZE;
for (int64_t i = begin; i < end; i++) {
int64_t outer_idx = i / num_chunks;
int64_t k = i % num_chunks;
int64_t inner_idx_begin = k * CHUNK_SIZE;
int64_t size = std::min(CHUNK_SIZE, inner_size - inner_idx_begin);
// init
Vec zero_vec = Vec(scalar_t(0));
Vec min_vec = Vec(-std::numeric_limits<scalar_t>::infinity());
int64_t d0 = 0;
for (; d0 < size - (size % Vec::size()); d0 += Vec::size()) {
min_vec.store(input_max_data + d0);
zero_vec.store(tmp_sum_data + d0);
}
for (; d0 < size; d0++) {
input_max_data[d0] = -std::numeric_limits<scalar_t>::infinity();
tmp_sum_data[d0] = scalar_t(0);
}
// compute max
for (int64_t dim_idx = 0; dim_idx < dim_size; dim_idx++) {
scalar_t* input_ptr = input_data_base + outer_idx * dim_size * inner_size
+ dim_idx * inner_size + inner_idx_begin;
int64_t d1 = 0;
for (; d1 < size - (size % Vec::size()); d1 += Vec::size()) {
Vec data_vec = Vec::loadu(input_ptr + d1);
Vec max_vec = Vec::loadu(input_max_data + d1);
max_vec = Vec::blendv(max_vec, data_vec, data_vec > max_vec);
max_vec.store(input_max_data + d1);
}
for (; d1 < size; d1++) {
scalar_t data_val = input_ptr[d1];
scalar_t max_val = input_max_data[d1];
input_max_data[d1] = data_val > max_val ? data_val : max_val;
}
}
// compute sum of (x - max).exp()
for (int64_t dim_idx = 0; dim_idx < dim_size; dim_idx++) {
scalar_t* input_ptr = input_data_base + outer_idx * dim_size * inner_size
+ dim_idx * inner_size + inner_idx_begin;
int64_t d2 = 0;
for (; d2 < size - (size % Vec::size()); d2 += Vec::size()) {
Vec data_vec = Vec::loadu(input_ptr + d2);
Vec sum_vec = Vec::loadu(tmp_sum_data + d2);
Vec max_vec = Vec::loadu(input_max_data + d2);
sum_vec += (data_vec - max_vec).exp();
sum_vec.store(tmp_sum_data + d2);
}
for (; d2 < size; d2++) {
scalar_t data_val = input_ptr[d2];
scalar_t max_val = input_max_data[d2];
tmp_sum_data[d2] += std::exp(data_val - max_val);
}
}
// apply log
vec::map([](Vec x) { return x.log(); }, tmp_sum_data, tmp_sum_data, size);
// compute x - max - sum
for (int64_t dim_idx = 0; dim_idx < dim_size; dim_idx++) {
int64_t offset = outer_idx * dim_size * inner_size + dim_idx * inner_size + inner_idx_begin;
scalar_t* input_ptr = input_data_base + offset;
scalar_t* output_ptr = output_data_base + offset;
int64_t d3 = 0;
for (; d3 < size - (size % Vec::size()); d3 += Vec::size()) {
Vec data_vec = Vec::loadu(input_ptr + d3);
Vec max_vec = Vec::loadu(input_max_data + d3);
Vec sum_vec = Vec::loadu(tmp_sum_data + d3);
Vec out_vec = data_vec - max_vec - sum_vec;
out_vec.store(output_ptr + d3);
}
for (; d3 < size; d3++) {
output_ptr[d3] = input_ptr[d3] - input_max_data[d3] - tmp_sum_data[d3];
}
}
}
});
}
template <>
inline void _vec_logsoftmax<BFloat16>(
BFloat16* input_data_base,
BFloat16* output_data_base,
int64_t outer_size,
int64_t inner_size,
int64_t dim_size) {
using bVec = vec::Vectorized<BFloat16>;
using fVec = vec::Vectorized<float>;
int64_t BLOCK_SIZE = 128 * 1024;
int64_t CHUNK_SIZE = std::max(int64_t(BLOCK_SIZE / dim_size / sizeof(BFloat16)), (int64_t) bVec::size());
CHUNK_SIZE = CHUNK_SIZE / bVec::size() * bVec::size();
int64_t num_chunks = divup(inner_size, CHUNK_SIZE);
int64_t grain_size = internal::GRAIN_SIZE / (16 * dim_size * CHUNK_SIZE);
at::parallel_for(0, outer_size * num_chunks, grain_size, [&](int64_t begin, int64_t end) {
std::unique_ptr<float []> buffer(new float[CHUNK_SIZE * 2]);
float* input_max_data = buffer.get();
float* tmp_sum_data = buffer.get() + CHUNK_SIZE;
// thread local buffer that holds input data in float32 to save next 2 dtype conversion
std::unique_ptr<float []> input_buffer(new float[dim_size * CHUNK_SIZE]);
float* input_buffer_data = input_buffer.get();
// init
for (int64_t i = begin; i < end; i++) {
int64_t outer_idx = i / num_chunks;
int64_t k = i % num_chunks;
int64_t inner_idx_begin = k * CHUNK_SIZE;
int64_t size = std::min(CHUNK_SIZE, inner_size - inner_idx_begin);
fVec zero_fvec = fVec(float(0));
fVec min_fvec = fVec(-std::numeric_limits<float>::infinity());
int64_t d0 = 0;
for (; d0 < size - (size % bVec::size()); d0 += bVec::size()) {
min_fvec.store(input_max_data + d0);
min_fvec.store(input_max_data + d0 + fVec::size());
zero_fvec.store(tmp_sum_data + d0);
zero_fvec.store(tmp_sum_data + d0 + fVec::size());
}
for (; d0 < size; d0++) {
input_max_data[d0] = -std::numeric_limits<float>::infinity();
tmp_sum_data[d0] = float(0);
}
// compute max
for (int64_t dim_idx = 0; dim_idx < dim_size; dim_idx++) {
BFloat16* input_ptr = input_data_base + outer_idx * dim_size * inner_size
+ dim_idx * inner_size + inner_idx_begin;
float* input_buffer_ptr = input_buffer_data + dim_idx * CHUNK_SIZE;
int64_t d1 = 0;
for (; d1 < size - (size % bVec::size()); d1 += bVec::size()) {
bVec data_bvec = bVec::loadu(input_ptr + d1);
fVec data_fvec0, data_fvec1;
std::tie(data_fvec0, data_fvec1) = convert_bfloat16_float(data_bvec);
fVec max_fvec0 = fVec::loadu(input_max_data + d1);
fVec max_fvec1 = fVec::loadu(input_max_data + d1 + fVec::size());
max_fvec0 = fVec::blendv(max_fvec0, data_fvec0, data_fvec0 > max_fvec0);
max_fvec1 = fVec::blendv(max_fvec1, data_fvec1, data_fvec1 > max_fvec1);
max_fvec0.store(input_max_data + d1);
max_fvec0.store(input_max_data + d1 + fVec::size());
// cache the 'converted' float input
data_fvec0.store(input_buffer_ptr + d1);
data_fvec1.store(input_buffer_ptr + d1 + fVec::size());
}
for (; d1 < size; d1++) {
float data_val = float(input_ptr[d1]);
float max_val = input_max_data[d1];
input_max_data[d1] = data_val > max_val ? data_val : max_val;
input_buffer_ptr[d1] = data_val;
}
}
// compute sum of (x - max).exp()
for (int64_t dim_idx = 0; dim_idx < dim_size; dim_idx++) {
float* input_buffer_ptr = input_buffer_data + dim_idx * CHUNK_SIZE;
int64_t d2 = 0;
for (; d2 < size - (size % bVec::size()); d2 += bVec::size()) {
fVec data_fvec0 = fVec::loadu(input_buffer_ptr + d2);
fVec data_fvec1 = fVec::loadu(input_buffer_ptr + d2 + fVec::size());
fVec sum_fvec0 = fVec::loadu(tmp_sum_data + d2);
fVec sum_fvec1 = fVec::loadu(tmp_sum_data + d2 + fVec::size());
fVec max_fvec0 = fVec::loadu(input_max_data + d2);
fVec max_fvec1 = fVec::loadu(input_max_data + d2 + fVec::size());
sum_fvec0 += (data_fvec0 - max_fvec0).exp();
sum_fvec1 += (data_fvec1 - max_fvec1).exp();
sum_fvec0.store(tmp_sum_data + d2);
sum_fvec1.store(tmp_sum_data + d2 + fVec::size());
}
for (; d2 < size; d2++) {
float data_val = input_buffer_ptr[d2];
float max_val = input_max_data[d2];
tmp_sum_data[d2] += std::exp(data_val - max_val);
}
}
// apply log
vec::map([](fVec x) { return x.log(); }, tmp_sum_data, tmp_sum_data, size);
// compute x - max - sum
for (int64_t dim_idx = 0; dim_idx < dim_size; dim_idx++) {
float* input_buffer_ptr = input_buffer_data + dim_idx * CHUNK_SIZE;
BFloat16* output_ptr = output_data_base + outer_idx * dim_size * inner_size
+ dim_idx * inner_size + inner_idx_begin;
int64_t d3 = 0;
for (; d3 < size - (size % bVec::size()); d3 += bVec::size()) {
fVec data_fvec0 = fVec::loadu(input_buffer_ptr + d3);
fVec data_fvec1 = fVec::loadu(input_buffer_ptr + d3 + fVec::size());
fVec max_fvec0 = fVec::loadu(input_max_data + d3);
fVec max_fvec1 = fVec::loadu(input_max_data + d3 + fVec::size());
fVec sum_fvec0 = fVec::loadu(tmp_sum_data + d3);
fVec sum_fvec1 = fVec::loadu(tmp_sum_data + d3 + fVec::size());
fVec out_fvec0 = data_fvec0 - max_fvec0 - sum_fvec0;
fVec out_fvec1 = data_fvec1 - max_fvec1 - sum_fvec1;
bVec out_bvec = convert_float_bfloat16(out_fvec0, out_fvec1);
out_bvec.store(output_ptr + d3);
}
for (; d3 < size; d3++) {
output_ptr[d3] = BFloat16(input_buffer_ptr[d3] - input_max_data[d3] - tmp_sum_data[d3]);
}
}
}
});
}
template <typename scalar_t, bool LogSoftMax>
struct vec_softmax {
static void apply(const Tensor& output, const Tensor& input, int64_t dim) {
int64_t outer_size = 1;
int64_t dim_size = input.size(dim);
int64_t inner_size = 1;
for (const auto i : c10::irange(dim))outer_size *= input.size(i);
for (int64_t i = dim + 1; i < input.dim(); ++i)
inner_size *= input.size(i);
scalar_t* input_data_base = input.data_ptr<scalar_t>();
scalar_t* output_data_base = output.data_ptr<scalar_t>();
if (LogSoftMax) {
_vec_logsoftmax(
input_data_base, output_data_base, outer_size, inner_size, dim_size);
} else {
_vec_softmax(
input_data_base, output_data_base, outer_size, inner_size, dim_size);
}
}
};
template <typename scalar_t, bool LogSoftMax>
struct vec_host_softmax_backward_lastdim {
static void
apply(const Tensor& grad_input, const Tensor& grad, const Tensor& output) {
int64_t outer_size = 1;
int64_t dim_size = grad.size(grad.ndimension() - 1);
for (int64_t i = 0; i < grad.ndimension() - 1; ++i)
outer_size *= grad.size(i);
scalar_t* grad_input_data_base = grad_input.data_ptr<scalar_t>();
scalar_t* grad_data_base = grad.data_ptr<scalar_t>();
scalar_t* output_data_base = output.data_ptr<scalar_t>();
_vec_host_softmax_backward_lastdim<scalar_t, LogSoftMax>(
grad_input_data_base,
grad_data_base,
output_data_base,
outer_size,
dim_size);
}
};
static void softmax_lastdim_kernel_impl(
const Tensor& result,
const Tensor& self) {
AT_DISPATCH_FLOATING_TYPES_AND(
at::ScalarType::BFloat16, self.scalar_type(),
"softmax_lastdim_kernel_impl",
[&] { vec_host_softmax_lastdim<scalar_t, false>::apply(result, self); });
}
static void softmax_kernel_impl(const Tensor& result, const Tensor& self, int64_t dim) {
AT_DISPATCH_FLOATING_TYPES_AND(at::ScalarType::BFloat16, self.scalar_type(),
"softmax_kernel_impl",
[&] { vec_softmax<scalar_t, false>::apply(result, self, dim); });
}
static void log_softmax_lastdim_kernel_impl(
const Tensor& result,
const Tensor& self) {
AT_DISPATCH_FLOATING_TYPES_AND(
at::ScalarType::BFloat16, self.scalar_type(),
"log_softmax_lastdim_kernel_impl",
[&] { vec_host_softmax_lastdim<scalar_t, true>::apply(result, self); });
}
static void log_softmax_kernel_impl(const Tensor& result, const Tensor& self, int64_t dim) {
AT_DISPATCH_FLOATING_TYPES_AND(at::ScalarType::BFloat16, self.scalar_type(),
"softmax_kernel_impl",
[&] { vec_softmax<scalar_t, true>::apply(result, self, dim); });
}
static void softmax_backward_lastdim_kernel_impl(
const Tensor& grad_input,
const Tensor& grad,
const Tensor& output) {
AT_DISPATCH_FLOATING_TYPES_AND(
at::ScalarType::BFloat16, grad.scalar_type(),
"softmax_backward_lastdim_kernel_impl", [&] {
vec_host_softmax_backward_lastdim<scalar_t, false>::apply(
grad_input, grad, output);
});
}
static void log_softmax_backward_lastdim_kernel_impl(
const Tensor& grad_input,
const Tensor& grad,
const Tensor& output) {
AT_DISPATCH_FLOATING_TYPES_AND(
at::ScalarType::BFloat16, grad.scalar_type(),
"log_softmax_backward_lastdim_kernel_impl", [&] {
vec_host_softmax_backward_lastdim<scalar_t, true>::apply(
grad_input, grad, output);
});
}
} // anonymous namespace
REGISTER_DISPATCH(softmax_lastdim_kernel, &softmax_lastdim_kernel_impl);
REGISTER_DISPATCH(log_softmax_lastdim_kernel, &log_softmax_lastdim_kernel_impl);
REGISTER_DISPATCH(
softmax_backward_lastdim_kernel,
&softmax_backward_lastdim_kernel_impl);
REGISTER_DISPATCH(
log_softmax_backward_lastdim_kernel,
&log_softmax_backward_lastdim_kernel_impl);
REGISTER_DISPATCH(softmax_kernel, &softmax_kernel_impl);
REGISTER_DISPATCH(log_softmax_kernel, &log_softmax_kernel_impl);
}} // namespace at::native