-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils_modify.py
743 lines (637 loc) · 32.1 KB
/
utils_modify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import Any, Callable, Dict, List, Mapping, Sequence, Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from stardist_pkg.big import _grid_divisible, BlockND, OBJECT_KEYS#, repaint_labels
from stardist_pkg.matching import relabel_sequential
from stardist_pkg import dist_to_coord, non_maximum_suppression, polygons_to_label
#from stardist_pkg import dist_to_coord, polygons_to_label
from stardist_pkg import star_dist,edt_prob
from monai.data.meta_tensor import MetaTensor
from monai.data.utils import compute_importance_map, dense_patch_slices, get_valid_patch_size
from monai.transforms import Resize
from monai.utils import (
BlendMode,
PytorchPadMode,
convert_data_type,
convert_to_dst_type,
ensure_tuple,
fall_back_tuple,
look_up_option,
optional_import,
)
import cv2
from scipy import ndimage
from scipy.ndimage.filters import gaussian_filter
from scipy.ndimage.interpolation import affine_transform, map_coordinates
from skimage import morphology as morph
from scipy.ndimage import filters, measurements
from scipy.ndimage.morphology import (
binary_dilation,
binary_fill_holes,
distance_transform_cdt,
distance_transform_edt,
)
from skimage.segmentation import watershed
tqdm, _ = optional_import("tqdm", name="tqdm")
__all__ = ["sliding_window_inference"]
####
def normalize(mask, dtype=np.uint8):
return (255 * mask / np.amax(mask)).astype(dtype)
def fix_mirror_padding(ann):
"""Deal with duplicated instances due to mirroring in interpolation
during shape augmentation (scale, rotation etc.).
"""
current_max_id = np.amax(ann)
inst_list = list(np.unique(ann))
if 0 in inst_list:
inst_list.remove(0) # 0 is background
for inst_id in inst_list:
inst_map = np.array(ann == inst_id, np.uint8)
remapped_ids = measurements.label(inst_map)[0]
remapped_ids[remapped_ids > 1] += current_max_id
ann[remapped_ids > 1] = remapped_ids[remapped_ids > 1]
current_max_id = np.amax(ann)
return ann
####
def get_bounding_box(img):
"""Get bounding box coordinate information."""
rows = np.any(img, axis=1)
cols = np.any(img, axis=0)
rmin, rmax = np.where(rows)[0][[0, -1]]
cmin, cmax = np.where(cols)[0][[0, -1]]
# due to python indexing, need to add 1 to max
# else accessing will be 1px in the box, not out
rmax += 1
cmax += 1
return [rmin, rmax, cmin, cmax]
####
def cropping_center(x, crop_shape, batch=False):
"""Crop an input image at the centre.
Args:
x: input array
crop_shape: dimensions of cropped array
Returns:
x: cropped array
"""
orig_shape = x.shape
if not batch:
h0 = int((orig_shape[0] - crop_shape[0]) * 0.5)
w0 = int((orig_shape[1] - crop_shape[1]) * 0.5)
x = x[h0 : h0 + crop_shape[0], w0 : w0 + crop_shape[1]]
else:
h0 = int((orig_shape[1] - crop_shape[0]) * 0.5)
w0 = int((orig_shape[2] - crop_shape[1]) * 0.5)
x = x[:, h0 : h0 + crop_shape[0], w0 : w0 + crop_shape[1]]
return x
def gen_instance_hv_map(ann, crop_shape):
"""Input annotation must be of original shape.
The map is calculated only for instances within the crop portion
but based on the original shape in original image.
Perform following operation:
Obtain the horizontal and vertical distance maps for each
nuclear instance.
"""
orig_ann = ann.copy() # instance ID map
fixed_ann = fix_mirror_padding(orig_ann)
# re-cropping with fixed instance id map
crop_ann = cropping_center(fixed_ann, crop_shape)
# TODO: deal with 1 label warning
crop_ann = morph.remove_small_objects(crop_ann, min_size=30)
x_map = np.zeros(orig_ann.shape[:2], dtype=np.float32)
y_map = np.zeros(orig_ann.shape[:2], dtype=np.float32)
inst_list = list(np.unique(crop_ann))
if 0 in inst_list:
inst_list.remove(0) # 0 is background
for inst_id in inst_list:
inst_map = np.array(fixed_ann == inst_id, np.uint8)
inst_box = get_bounding_box(inst_map) # rmin, rmax, cmin, cmax
# expand the box by 2px
# Because we first pad the ann at line 207, the bboxes
# will remain valid after expansion
inst_box[0] -= 2
inst_box[2] -= 2
inst_box[1] += 2
inst_box[3] += 2
# fix inst_box
inst_box[0] = max(inst_box[0], 0)
inst_box[2] = max(inst_box[2], 0)
# inst_box[1] = min(inst_box[1], fixed_ann.shape[0])
# inst_box[3] = min(inst_box[3], fixed_ann.shape[1])
inst_map = inst_map[inst_box[0] : inst_box[1], inst_box[2] : inst_box[3]]
if inst_map.shape[0] < 2 or inst_map.shape[1] < 2:
print(f'inst_map.shape < 2: {inst_map.shape}, {inst_box}, {get_bounding_box(np.array(fixed_ann == inst_id, np.uint8))}')
continue
# instance center of mass, rounded to nearest pixel
inst_com = list(measurements.center_of_mass(inst_map))
if np.isnan(measurements.center_of_mass(inst_map)).any():
print(inst_id, fixed_ann.shape, np.array(fixed_ann == inst_id, np.uint8).shape)
print(get_bounding_box(np.array(fixed_ann == inst_id, np.uint8)))
print(inst_map)
print(inst_list)
print(inst_box)
print(np.count_nonzero(np.array(fixed_ann == inst_id, np.uint8)))
inst_com[0] = int(inst_com[0] + 0.5)
inst_com[1] = int(inst_com[1] + 0.5)
inst_x_range = np.arange(1, inst_map.shape[1] + 1)
inst_y_range = np.arange(1, inst_map.shape[0] + 1)
# shifting center of pixels grid to instance center of mass
inst_x_range -= inst_com[1]
inst_y_range -= inst_com[0]
inst_x, inst_y = np.meshgrid(inst_x_range, inst_y_range)
# remove coord outside of instance
inst_x[inst_map == 0] = 0
inst_y[inst_map == 0] = 0
inst_x = inst_x.astype("float32")
inst_y = inst_y.astype("float32")
# normalize min into -1 scale
if np.min(inst_x) < 0:
inst_x[inst_x < 0] /= -np.amin(inst_x[inst_x < 0])
if np.min(inst_y) < 0:
inst_y[inst_y < 0] /= -np.amin(inst_y[inst_y < 0])
# normalize max into +1 scale
if np.max(inst_x) > 0:
inst_x[inst_x > 0] /= np.amax(inst_x[inst_x > 0])
if np.max(inst_y) > 0:
inst_y[inst_y > 0] /= np.amax(inst_y[inst_y > 0])
####
x_map_box = x_map[inst_box[0] : inst_box[1], inst_box[2] : inst_box[3]]
x_map_box[inst_map > 0] = inst_x[inst_map > 0]
y_map_box = y_map[inst_box[0] : inst_box[1], inst_box[2] : inst_box[3]]
y_map_box[inst_map > 0] = inst_y[inst_map > 0]
hv_map = np.dstack([x_map, y_map])
return hv_map
def remove_small_objects(pred, min_size=64, connectivity=1):
"""Remove connected components smaller than the specified size.
This function is taken from skimage.morphology.remove_small_objects, but the warning
is removed when a single label is provided.
Args:
pred: input labelled array
min_size: minimum size of instance in output array
connectivity: The connectivity defining the neighborhood of a pixel.
Returns:
out: output array with instances removed under min_size
"""
out = pred
if min_size == 0: # shortcut for efficiency
return out
if out.dtype == bool:
selem = ndimage.generate_binary_structure(pred.ndim, connectivity)
ccs = np.zeros_like(pred, dtype=np.int32)
ndimage.label(pred, selem, output=ccs)
else:
ccs = out
try:
component_sizes = np.bincount(ccs.ravel())
except ValueError:
raise ValueError(
"Negative value labels are not supported. Try "
"relabeling the input with `scipy.ndimage.label` or "
"`skimage.morphology.label`."
)
too_small = component_sizes < min_size
too_small_mask = too_small[ccs]
out[too_small_mask] = 0
return out
####
def gen_targets(ann, crop_shape, **kwargs):
"""Generate the targets for the network."""
hv_map = gen_instance_hv_map(ann, crop_shape)
np_map = ann.copy()
np_map[np_map > 0] = 1
hv_map = cropping_center(hv_map, crop_shape)
np_map = cropping_center(np_map, crop_shape)
target_dict = {
"hv_map": hv_map,
"np_map": np_map,
}
return target_dict
def __proc_np_hv(pred, np_thres=0.5, ksize=21, overall_thres=0.4, obj_size_thres=10):
"""Process Nuclei Prediction with XY Coordinate Map.
Args:
pred: prediction output, assuming
channel 0 contain probability map of nuclei
channel 1 containing the regressed X-map
channel 2 containing the regressed Y-map
"""
pred = np.array(pred, dtype=np.float32)
blb_raw = pred[..., 0]
h_dir_raw = pred[..., 1]
v_dir_raw = pred[..., 2]
# processing
blb = np.array(blb_raw >= np_thres, dtype=np.int32)
blb = measurements.label(blb)[0]
blb = remove_small_objects(blb, min_size=10)
blb[blb > 0] = 1 # background is 0 already
h_dir = cv2.normalize(
h_dir_raw, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F
)
v_dir = cv2.normalize(
v_dir_raw, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F
)
sobelh = cv2.Sobel(h_dir, cv2.CV_64F, 1, 0, ksize=ksize)
sobelv = cv2.Sobel(v_dir, cv2.CV_64F, 0, 1, ksize=ksize)
sobelh = 1 - (
cv2.normalize(
sobelh, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F
)
)
sobelv = 1 - (
cv2.normalize(
sobelv, None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F
)
)
overall = np.maximum(sobelh, sobelv)
overall = overall - (1 - blb)
overall[overall < 0] = 0
dist = (1.0 - overall) * blb
## nuclei values form mountains so inverse to get basins
dist = -cv2.GaussianBlur(dist, (3, 3), 0)
overall = np.array(overall >= overall_thres, dtype=np.int32)
marker = blb - overall
marker[marker < 0] = 0
marker = binary_fill_holes(marker).astype("uint8")
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
marker = cv2.morphologyEx(marker, cv2.MORPH_OPEN, kernel)
marker = measurements.label(marker)[0]
marker = remove_small_objects(marker, min_size=obj_size_thres)
proced_pred = watershed(dist, markers=marker, mask=blb)
return proced_pred
####
def colorize(ch, vmin, vmax):
"""Will clamp value value outside the provided range to vmax and vmin."""
cmap = plt.get_cmap("jet")
ch = np.squeeze(ch.astype("float32"))
vmin = vmin if vmin is not None else ch.min()
vmax = vmax if vmax is not None else ch.max()
ch[ch > vmax] = vmax # clamp value
ch[ch < vmin] = vmin
ch = (ch - vmin) / (vmax - vmin + 1.0e-16)
# take RGB from RGBA heat map
ch_cmap = (cmap(ch)[..., :3] * 255).astype("uint8")
return ch_cmap
####
def random_colors(N, bright=True):
"""Generate random colors.
To get visually distinct colors, generate them in HSV space then
convert to RGB.
"""
brightness = 1.0 if bright else 0.7
hsv = [(i / N, 1, brightness) for i in range(N)]
colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))
random.shuffle(colors)
return colors
####
def visualize_instances_map(
input_image, inst_map, type_map=None, type_colour=None, line_thickness=2
):
"""Overlays segmentation results on image as contours.
Args:
input_image: input image
inst_map: instance mask with unique value for every object
type_map: type mask with unique value for every class
type_colour: a dict of {type : colour} , `type` is from 0-N
and `colour` is a tuple of (R, G, B)
line_thickness: line thickness of contours
Returns:
overlay: output image with segmentation overlay as contours
"""
overlay = np.copy((input_image).astype(np.uint8))
inst_list = list(np.unique(inst_map)) # get list of instances
inst_list.remove(0) # remove background
inst_rng_colors = random_colors(len(inst_list))
inst_rng_colors = np.array(inst_rng_colors) * 255
inst_rng_colors = inst_rng_colors.astype(np.uint8)
for inst_idx, inst_id in enumerate(inst_list):
inst_map_mask = np.array(inst_map == inst_id, np.uint8) # get single object
y1, y2, x1, x2 = get_bounding_box(inst_map_mask)
y1 = y1 - 2 if y1 - 2 >= 0 else y1
x1 = x1 - 2 if x1 - 2 >= 0 else x1
x2 = x2 + 2 if x2 + 2 <= inst_map.shape[1] - 1 else x2
y2 = y2 + 2 if y2 + 2 <= inst_map.shape[0] - 1 else y2
inst_map_crop = inst_map_mask[y1:y2, x1:x2]
contours_crop = cv2.findContours(
inst_map_crop, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
)
# only has 1 instance per map, no need to check #contour detected by opencv
contours_crop = np.squeeze(
contours_crop[0][0].astype("int32")
) # * opencv protocol format may break
contours_crop += np.asarray([[x1, y1]]) # index correction
if type_map is not None:
type_map_crop = type_map[y1:y2, x1:x2]
type_id = np.unique(type_map_crop).max() # non-zero
inst_colour = type_colour[type_id]
else:
inst_colour = (inst_rng_colors[inst_idx]).tolist()
cv2.drawContours(overlay, [contours_crop], -1, inst_colour, line_thickness)
return overlay
def sliding_window_inference_large(inputs,block_size,min_overlap,context,roi_size,sw_batch_size,predictor,device):
h,w = inputs.shape[0],inputs.shape[1]
if h < 5000 or w < 5000:
test_tensor = torch.from_numpy(np.expand_dims(inputs, 0)).permute(0,3,1,2).type(torch.FloatTensor).to(device)
output_dist,output_prob = sliding_window_inference(test_tensor, roi_size, sw_batch_size, predictor)
prob = output_prob[0][0].cpu().numpy()
dist = output_dist[0].cpu().numpy()
dist = np.transpose(dist,(1,2,0))
dist = np.maximum(1e-3, dist)
if h*w < 1500*1500:
points, probi, disti = non_maximum_suppression(dist,prob,prob_thresh=0.55, nms_thresh=0.4,cut=True)
else:
points, probi, disti = non_maximum_suppression(dist,prob,prob_thresh=0.5, nms_thresh=0.4)
labels_out = polygons_to_label(disti, points, prob=probi,shape=prob.shape)
else:
n = inputs.ndim
axes = 'YXC'
grid = (1,1,1)
if np.isscalar(block_size): block_size = n*[block_size]
if np.isscalar(min_overlap): min_overlap = n*[min_overlap]
if np.isscalar(context): context = n*[context]
shape_out = (inputs.shape[0],inputs.shape[1])
labels_out = np.zeros(shape_out, dtype=np.uint64)
#print(inputs.dtype)
block_size[2] = inputs.shape[2]
min_overlap[2] = context[2] = 0
block_size = tuple(_grid_divisible(g, v, name='block_size', verbose=False) for v,g,a in zip(block_size, grid,axes))
min_overlap = tuple(_grid_divisible(g, v, name='min_overlap', verbose=False) for v,g,a in zip(min_overlap,grid,axes))
context = tuple(_grid_divisible(g, v, name='context', verbose=False) for v,g,a in zip(context, grid,axes))
print(f'effective: block_size={block_size}, min_overlap={min_overlap}, context={context}', flush=True)
blocks = BlockND.cover(inputs.shape, axes, block_size, min_overlap, context)
label_offset = 1
blocks = tqdm(blocks)
for block in blocks:
image = block.read(inputs, axes=axes)
test_tensor = torch.from_numpy(np.expand_dims(image, 0)).permute(0,3,1,2).type(torch.FloatTensor).to(device)
output_dist,output_prob = sliding_window_inference(test_tensor, roi_size, sw_batch_size, predictor)
prob = output_prob[0][0].cpu().numpy()
dist = output_dist[0].cpu().numpy()
dist = np.transpose(dist,(1,2,0))
dist = np.maximum(1e-3, dist)
points, probi, disti = non_maximum_suppression(dist,prob,prob_thresh=0.5, nms_thresh=0.4)
coord = dist_to_coord(disti,points)
polys = dict(coord=coord, points=points, prob=probi)
labels = polygons_to_label(disti, points, prob=probi,shape=prob.shape)
labels = block.crop_context(labels, axes='YX')
labels, polys = block.filter_objects(labels, polys, axes='YX')
labels = relabel_sequential(labels, label_offset)[0]
if labels_out is not None:
block.write(labels_out, labels, axes='YX')
#for k,v in polys.items():
#polys_all.setdefault(k,[]).append(v)
label_offset += len(polys['prob'])
del labels
#polys_all = {k: (np.concatenate(v) if k in OBJECT_KEYS else v[0]) for k,v in polys_all.items()}
return labels_out
def sliding_window_inference(
inputs: torch.Tensor,
roi_size: Union[Sequence[int], int],
sw_batch_size: int,
predictor: Callable[..., Union[torch.Tensor, Sequence[torch.Tensor], Dict[Any, torch.Tensor]]],
overlap: float = 0.25,
mode: Union[BlendMode, str] = BlendMode.CONSTANT,
sigma_scale: Union[Sequence[float], float] = 0.125,
padding_mode: Union[PytorchPadMode, str] = PytorchPadMode.CONSTANT,
cval: float = 0.0,
sw_device: Union[torch.device, str, None] = None,
device: Union[torch.device, str, None] = None,
progress: bool = False,
roi_weight_map: Union[torch.Tensor, None] = None,
*args: Any,
**kwargs: Any,
) -> Union[torch.Tensor, Tuple[torch.Tensor, ...], Dict[Any, torch.Tensor]]:
"""
Sliding window inference on `inputs` with `predictor`.
The outputs of `predictor` could be a tensor, a tuple, or a dictionary of tensors.
Each output in the tuple or dict value is allowed to have different resolutions with respect to the input.
e.g., the input patch spatial size is [128,128,128], the output (a tuple of two patches) patch sizes
could be ([128,64,256], [64,32,128]).
In this case, the parameter `overlap` and `roi_size` need to be carefully chosen to ensure the output ROI is still
an integer. If the predictor's input and output spatial sizes are not equal, we recommend choosing the parameters
so that `overlap*roi_size*output_size/input_size` is an integer (for each spatial dimension).
When roi_size is larger than the inputs' spatial size, the input image are padded during inference.
To maintain the same spatial sizes, the output image will be cropped to the original input size.
Args:
inputs: input image to be processed (assuming NCHW[D])
roi_size: the spatial window size for inferences.
When its components have None or non-positives, the corresponding inputs dimension will be used.
if the components of the `roi_size` are non-positive values, the transform will use the
corresponding components of img size. For example, `roi_size=(32, -1)` will be adapted
to `(32, 64)` if the second spatial dimension size of img is `64`.
sw_batch_size: the batch size to run window slices.
predictor: given input tensor ``patch_data`` in shape NCHW[D],
The outputs of the function call ``predictor(patch_data)`` should be a tensor, a tuple, or a dictionary
with Tensor values. Each output in the tuple or dict value should have the same batch_size, i.e. NM'H'W'[D'];
where H'W'[D'] represents the output patch's spatial size, M is the number of output channels,
N is `sw_batch_size`, e.g., the input shape is (7, 1, 128,128,128),
the output could be a tuple of two tensors, with shapes: ((7, 5, 128, 64, 256), (7, 4, 64, 32, 128)).
In this case, the parameter `overlap` and `roi_size` need to be carefully chosen
to ensure the scaled output ROI sizes are still integers.
If the `predictor`'s input and output spatial sizes are different,
we recommend choosing the parameters so that ``overlap*roi_size*zoom_scale`` is an integer for each dimension.
overlap: Amount of overlap between scans.
mode: {``"constant"``, ``"gaussian"``}
How to blend output of overlapping windows. Defaults to ``"constant"``.
- ``"constant``": gives equal weight to all predictions.
- ``"gaussian``": gives less weight to predictions on edges of windows.
sigma_scale: the standard deviation coefficient of the Gaussian window when `mode` is ``"gaussian"``.
Default: 0.125. Actual window sigma is ``sigma_scale`` * ``dim_size``.
When sigma_scale is a sequence of floats, the values denote sigma_scale at the corresponding
spatial dimensions.
padding_mode: {``"constant"``, ``"reflect"``, ``"replicate"``, ``"circular"``}
Padding mode for ``inputs``, when ``roi_size`` is larger than inputs. Defaults to ``"constant"``
See also: https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html
cval: fill value for 'constant' padding mode. Default: 0
sw_device: device for the window data.
By default the device (and accordingly the memory) of the `inputs` is used.
Normally `sw_device` should be consistent with the device where `predictor` is defined.
device: device for the stitched output prediction.
By default the device (and accordingly the memory) of the `inputs` is used. If for example
set to device=torch.device('cpu') the gpu memory consumption is less and independent of the
`inputs` and `roi_size`. Output is on the `device`.
progress: whether to print a `tqdm` progress bar.
roi_weight_map: pre-computed (non-negative) weight map for each ROI.
If not given, and ``mode`` is not `constant`, this map will be computed on the fly.
args: optional args to be passed to ``predictor``.
kwargs: optional keyword args to be passed to ``predictor``.
Note:
- input must be channel-first and have a batch dim, supports N-D sliding window.
"""
compute_dtype = inputs.dtype
num_spatial_dims = len(inputs.shape) - 2
if overlap < 0 or overlap >= 1:
raise ValueError("overlap must be >= 0 and < 1.")
# determine image spatial size and batch size
# Note: all input images must have the same image size and batch size
batch_size, _, *image_size_ = inputs.shape
if device is None:
device = inputs.device
if sw_device is None:
sw_device = inputs.device
roi_size = fall_back_tuple(roi_size, image_size_)
# in case that image size is smaller than roi size
image_size = tuple(max(image_size_[i], roi_size[i]) for i in range(num_spatial_dims))
pad_size = []
for k in range(len(inputs.shape) - 1, 1, -1):
diff = max(roi_size[k - 2] - inputs.shape[k], 0)
half = diff // 2
pad_size.extend([half, diff - half])
inputs = F.pad(inputs, pad=pad_size, mode=look_up_option(padding_mode, PytorchPadMode), value=cval)
#print('inputs',inputs.shape)
scan_interval = _get_scan_interval(image_size, roi_size, num_spatial_dims, overlap)
# Store all slices in list
slices = dense_patch_slices(image_size, roi_size, scan_interval)
num_win = len(slices) # number of windows per image
total_slices = num_win * batch_size # total number of windows
# Create window-level importance map
valid_patch_size = get_valid_patch_size(image_size, roi_size)
if valid_patch_size == roi_size and (roi_weight_map is not None):
importance_map = roi_weight_map
else:
try:
importance_map = compute_importance_map(valid_patch_size, mode=mode, sigma_scale=sigma_scale, device=device)
except BaseException as e:
raise RuntimeError(
"Seems to be OOM. Please try smaller patch size or mode='constant' instead of mode='gaussian'."
) from e
importance_map = convert_data_type(importance_map, torch.Tensor, device, compute_dtype)[0] # type: ignore
# handle non-positive weights
min_non_zero = max(importance_map[importance_map != 0].min().item(), 1e-3)
importance_map = torch.clamp(importance_map.to(torch.float32), min=min_non_zero).to(compute_dtype)
# Perform predictions
dict_key, output_image_list, count_map_list = None, [], []
_initialized_ss = -1
is_tensor_output = True # whether the predictor's output is a tensor (instead of dict/tuple)
# for each patch
for slice_g in tqdm(range(0, total_slices, sw_batch_size)) if progress else range(0, total_slices, sw_batch_size):
slice_range = range(slice_g, min(slice_g + sw_batch_size, total_slices))
unravel_slice = [
[slice(int(idx / num_win), int(idx / num_win) + 1), slice(None)] + list(slices[idx % num_win])
for idx in slice_range
]
window_data = torch.cat(
[convert_data_type(inputs[win_slice], torch.Tensor)[0] for win_slice in unravel_slice]
).to(sw_device)
seg_prob_out = predictor(window_data, *args, **kwargs) # batched patch segmentation
#print('seg_prob_out',seg_prob_out[0].shape)
# convert seg_prob_out to tuple seg_prob_tuple, this does not allocate new memory.
seg_prob_tuple: Tuple[torch.Tensor, ...]
if isinstance(seg_prob_out, torch.Tensor):
seg_prob_tuple = (seg_prob_out,)
elif isinstance(seg_prob_out, Mapping):
if dict_key is None:
dict_key = sorted(seg_prob_out.keys()) # track predictor's output keys
seg_prob_tuple = tuple(seg_prob_out[k] for k in dict_key)
is_tensor_output = False
else:
seg_prob_tuple = ensure_tuple(seg_prob_out)
is_tensor_output = False
# for each output in multi-output list
for ss, seg_prob in enumerate(seg_prob_tuple):
seg_prob = seg_prob.to(device) # BxCxMxNxP or BxCxMxN
# compute zoom scale: out_roi_size/in_roi_size
zoom_scale = []
for axis, (img_s_i, out_w_i, in_w_i) in enumerate(
zip(image_size, seg_prob.shape[2:], window_data.shape[2:])
):
_scale = out_w_i / float(in_w_i)
if not (img_s_i * _scale).is_integer():
warnings.warn(
f"For spatial axis: {axis}, output[{ss}] will have non-integer shape. Spatial "
f"zoom_scale between output[{ss}] and input is {_scale}. Please pad inputs."
)
zoom_scale.append(_scale)
if _initialized_ss < ss: # init. the ss-th buffer at the first iteration
# construct multi-resolution outputs
output_classes = seg_prob.shape[1]
output_shape = [batch_size, output_classes] + [
int(image_size_d * zoom_scale_d) for image_size_d, zoom_scale_d in zip(image_size, zoom_scale)
]
# allocate memory to store the full output and the count for overlapping parts
output_image_list.append(torch.zeros(output_shape, dtype=compute_dtype, device=device))
count_map_list.append(torch.zeros([1, 1] + output_shape[2:], dtype=compute_dtype, device=device))
_initialized_ss += 1
# resizing the importance_map
resizer = Resize(spatial_size=seg_prob.shape[2:], mode="nearest", anti_aliasing=False)
# store the result in the proper location of the full output. Apply weights from importance map.
for idx, original_idx in zip(slice_range, unravel_slice):
# zoom roi
original_idx_zoom = list(original_idx) # 4D for 2D image, 5D for 3D image
for axis in range(2, len(original_idx_zoom)):
zoomed_start = original_idx[axis].start * zoom_scale[axis - 2]
zoomed_end = original_idx[axis].stop * zoom_scale[axis - 2]
if not zoomed_start.is_integer() or (not zoomed_end.is_integer()):
warnings.warn(
f"For axis-{axis-2} of output[{ss}], the output roi range is not int. "
f"Input roi range is ({original_idx[axis].start}, {original_idx[axis].stop}). "
f"Spatial zoom_scale between output[{ss}] and input is {zoom_scale[axis - 2]}. "
f"Corresponding output roi range is ({zoomed_start}, {zoomed_end}).\n"
f"Please change overlap ({overlap}) or roi_size ({roi_size[axis-2]}) for axis-{axis-2}. "
"Tips: if overlap*roi_size*zoom_scale is an integer, it usually works."
)
original_idx_zoom[axis] = slice(int(zoomed_start), int(zoomed_end), None)
importance_map_zoom = resizer(importance_map.unsqueeze(0))[0].to(compute_dtype)
# store results and weights
output_image_list[ss][original_idx_zoom] += importance_map_zoom * seg_prob[idx - slice_g]
count_map_list[ss][original_idx_zoom] += (
importance_map_zoom.unsqueeze(0).unsqueeze(0).expand(count_map_list[ss][original_idx_zoom].shape)
)
# account for any overlapping sections
for ss in range(len(output_image_list)):
output_image_list[ss] = (output_image_list[ss] / count_map_list.pop(0)).to(compute_dtype)
# remove padding if image_size smaller than roi_size
for ss, output_i in enumerate(output_image_list):
if torch.isnan(output_i).any() or torch.isinf(output_i).any():
warnings.warn("Sliding window inference results contain NaN or Inf.")
zoom_scale = [
seg_prob_map_shape_d / roi_size_d for seg_prob_map_shape_d, roi_size_d in zip(output_i.shape[2:], roi_size)
]
final_slicing: List[slice] = []
for sp in range(num_spatial_dims):
slice_dim = slice(pad_size[sp * 2], image_size_[num_spatial_dims - sp - 1] + pad_size[sp * 2])
slice_dim = slice(
int(round(slice_dim.start * zoom_scale[num_spatial_dims - sp - 1])),
int(round(slice_dim.stop * zoom_scale[num_spatial_dims - sp - 1])),
)
final_slicing.insert(0, slice_dim)
while len(final_slicing) < len(output_i.shape):
final_slicing.insert(0, slice(None))
output_image_list[ss] = output_i[final_slicing]
if dict_key is not None: # if output of predictor is a dict
final_output = dict(zip(dict_key, output_image_list))
else:
final_output = tuple(output_image_list) # type: ignore
final_output = final_output[0] if is_tensor_output else final_output
if isinstance(inputs, MetaTensor):
final_output = convert_to_dst_type(final_output, inputs, device=device)[0] # type: ignore
return final_output
def _get_scan_interval(
image_size: Sequence[int], roi_size: Sequence[int], num_spatial_dims: int, overlap: float
) -> Tuple[int, ...]:
"""
Compute scan interval according to the image size, roi size and overlap.
Scan interval will be `int((1 - overlap) * roi_size)`, if interval is 0,
use 1 instead to make sure sliding window works.
"""
if len(image_size) != num_spatial_dims:
raise ValueError("image coord different from spatial dims.")
if len(roi_size) != num_spatial_dims:
raise ValueError("roi coord different from spatial dims.")
scan_interval = []
for i in range(num_spatial_dims):
if roi_size[i] == image_size[i]:
scan_interval.append(int(roi_size[i]))
else:
interval = int(roi_size[i] * (1 - overlap))
scan_interval.append(interval if interval > 0 else 1)
return tuple(scan_interval)