-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_convnext_hover..py
513 lines (453 loc) · 19.6 KB
/
train_convnext_hover..py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Adapted form MONAI Tutorial: https://github.com/Project-MONAI/tutorials/tree/main/2d_segmentation/torch
"""
import argparse
import os, sys
join = os.path.join
#sys.path.append('/data2/yuxinyi/stardist_pytorch')
from tqdm import tqdm
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import DataParallel
from torch.utils.data import Dataset, DataLoader
from torch.utils.tensorboard import SummaryWriter
from torch.optim.lr_scheduler import ReduceLROnPlateau, StepLR
from stardist import star_dist, edt_prob
from stardist import dist_to_coord, non_maximum_suppression, polygons_to_label
from stardist import random_label_cmap, ray_angles
import monai
from collections import OrderedDict
from compute_metric import eval_tp_fp_fn, remove_boundary_cells
from monai.data import decollate_batch, PILReader
from monai.inferers import sliding_window_inference
from monai.metrics import DiceMetric
from monai.transforms import (
Activations,
AsChannelFirstd,
AddChanneld,
AsDiscrete,
CenterSpatialCropd,
Compose,
Lambdad,
LoadImaged,
# LoadImaged_modified,
SpatialPadd,
RandSpatialCropd,
RandRotate90d,
ScaleIntensityd,
RandAxisFlipd,
RandZoomd,
RandGaussianNoised,
RandAdjustContrastd,
RandGaussianSmoothd,
RandHistogramShiftd,
EnsureTyped,
EnsureType,
apply_transform,
)
from monai.visualize import plot_2d_or_3d_image
import matplotlib.pyplot as plt
from datetime import datetime
import shutil
from skimage import io
from skimage.color import gray2rgb
from models.flexible_unet_convext import FlexibleUNet_hv
from utils import cropping_center, gen_targets, xentropy_loss, dice_loss, mse_loss, msge_loss
import warnings
warnings.filterwarnings("ignore")
print("Successfully imported all requirements!")
torch.backends.cudnn.enabled = False
def rm_n_mkdir(dir_path):
"""Remove and make directory."""
if os.path.isdir(dir_path):
shutil.rmtree(dir_path)
os.makedirs(dir_path)
class HoverDataset(Dataset):
def __init__(self, data, transform, mask_shape):
self.data = data
self.transform = transform
self.mask_shape = mask_shape
def __len__(self) -> int:
return len(self.data)
def _transform(self, index):
data_i = self.data[index]
return apply_transform(self.transform, data_i) if self.transform is not None else data_i
def __getitem__(self, index):
ret = self._transform(index)
# print(target_dict['img'].dtype, target_dict['label'].dtype)
# gen targets
inst_map = np.squeeze(ret['label'].numpy()).astype('int32') # 1HW -> HW
target_dict = gen_targets(inst_map, inst_map.shape[:2]) # original code: self.mask_shape -> current code: aug_size
np_map, hv_map = target_dict['np_map'], target_dict['hv_map']
np_map = cropping_center(np_map, self.mask_shape) # HW
hv_map = cropping_center(hv_map, self.mask_shape) # HW2
target_dict['np_map'] = torch.tensor(np_map)
target_dict['hv_map'] = torch.tensor(hv_map)
# centercrop img
img = cropping_center(ret['img'].permute(1,2,0), self.mask_shape).permute(2,0,1) # CHW -> HWC -> CHW
ret['img'] = img
ret.update(target_dict)
return ret
def valid_step(model, batch_data):
model.eval() # infer mode
####
imgs = batch_data["img"]
true_np = batch_data["np_map"]
true_hv = batch_data["hv_map"]
imgs_gpu = imgs.to("cuda").type(torch.float32) # NCHW
# HWC
true_np = torch.squeeze(true_np).type(torch.int64)
true_hv = torch.squeeze(true_hv).type(torch.float32)
true_dict = {
"np": true_np,
"hv": true_hv,
}
# --------------------------------------------------------------
with torch.no_grad(): # dont compute gradient
preds = model(imgs_gpu)
pred_dict = {'np': preds[1], 'hv': preds[0]}
pred_dict = OrderedDict(
[[k, v.permute(0, 2, 3, 1).contiguous()] for k, v in pred_dict.items()]
)
pred_dict["np"] = F.softmax(pred_dict["np"], dim=-1)[..., 1]
# * Its up to user to define the protocol to process the raw output per step!
result_dict = { # protocol for contents exchange within `raw`
"raw": {
"imgs": imgs.numpy(),
"true_np": true_dict["np"].numpy(),
"true_hv": true_dict["hv"].numpy(),
"prob_np": pred_dict["np"].cpu().numpy(),
"pred_hv": pred_dict["hv"].cpu().numpy(),
}
}
return result_dict
def proc_valid_step_output(raw_data, nr_types=None):
track_dict = {}
def _dice_info(true, pred, label):
true = np.array(true == label, np.int32)
pred = np.array(pred == label, np.int32)
inter = (pred * true).sum()
total = (pred + true).sum()
return inter, total
over_inter = 0
over_total = 0
over_correct = 0
prob_np = raw_data["prob_np"]
true_np = raw_data["true_np"]
for idx in range(len(raw_data["true_np"])):
patch_prob_np = prob_np[idx]
patch_true_np = true_np[idx]
patch_pred_np = np.array(patch_prob_np > 0.5, dtype=np.int32)
inter, total = _dice_info(patch_true_np, patch_pred_np, 1)
correct = (patch_pred_np == patch_true_np).sum()
over_inter += inter
over_total += total
over_correct += correct
nr_pixels = len(true_np) * np.size(true_np[0])
acc_np = over_correct / nr_pixels
dice_np = 2 * over_inter / (over_total + 1.0e-8)
track_dict['np_acc'] = acc_np
track_dict['np_dice'] = dice_np
# * HV regression statistic
pred_hv = raw_data["pred_hv"]
true_hv = raw_data["true_hv"]
over_squared_error = 0
for idx in range(len(raw_data["true_np"])):
patch_pred_hv = pred_hv[idx]
patch_true_hv = true_hv[idx]
squared_error = patch_pred_hv - patch_true_hv
squared_error = squared_error * squared_error
over_squared_error += squared_error.sum()
mse = over_squared_error / nr_pixels
track_dict['hv_mse'] = mse
return track_dict
def main():
# class Args:
# def __init__(self, data_path, seed, num_workers, model_name, input_size, mask_size, batch_size, max_epochs,
# val_interval, save_interval, initial_lr, gpu_id, n_rays):
# self.data_path = data_path
# self.seed = seed
# self.num_workers = num_workers
# self.model_name = model_name
# self.input_size = input_size
# self.mask_size = mask_size
# self.batch_size = batch_size
# self.max_epochs = max_epochs
# self.val_interval = val_interval
# self.save_interval = save_interval
# self.initial_lr = initial_lr
# self.gpu_id = gpu_id
# self.n_rays = n_rays
# args = Args('/data2/yuxinyi/stardist_pytorch/dataset/class3_seed2', 2022, 4, 'efficientunet', 512, 256, 16, 600,
# 1, 10, 1e-4, '4', 32)
modelname = 'star-hover'
strategy = 'aug512_out512'
parser = argparse.ArgumentParser("Baseline for Microscopy image segmentation")
# Dataset parameters
parser.add_argument(
"--data_path",
default=f"/mntnfs/med_data5/louwei/consep/",
type=str,
help="training data path; subfolders: images, labels",
)
parser.add_argument("--seed", default=10, type=int)
# parser.add_argument("--resume", default=False, help="resume from checkpoint")
parser.add_argument("--num_workers", default=4, type=int)
# Model parameters
parser.add_argument(
"--model_name", default="efficientunet", help="select mode: unet, unetr, swinunetr"
)
parser.add_argument("--input_size", default=512, type=int, help="after rand crop")
parser.add_argument("--mask_size", default=512, type=int, help="after gen target")
# Training parameters
parser.add_argument("--batch_size", default=12, type=int, help="Batch size per GPU")
parser.add_argument("--max_epochs", default=800, type=int)
parser.add_argument("--val_interval", default=1, type=int)
parser.add_argument("--save_interval", default=10, type=int)
parser.add_argument("--initial_lr", type=float, default=1e-4, help="learning rate")
parser.add_argument('--gpu_id', type=str, default='0', help='gpu id')
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id)
work_dir = f'/mntnfs/med_data5/louwei/hover_stardist/class_{modelname}_{strategy}'
# monai.config.print_config()
pre_trained = False
# %% set training/validation split
np.random.seed(args.seed)
model_path = join(work_dir)
rm_n_mkdir(model_path)
run_id = datetime.now().strftime("%Y%m%d-%H%M")
img_path = join(args.data_path, "Train/Images_3channels")
gt_path = join(args.data_path, "Train/tif")
val_img_path = join(args.data_path, "Test/Images_3channels")
val_gt_path = join(args.data_path, "Test/tif")
img_names = sorted(os.listdir(img_path))
gt_names = [img_name.replace('.png', '.tif') for img_name in img_names]
img_num = len(img_names)
val_frac = 0.1
val_img_names = sorted(os.listdir(val_img_path))
val_gt_names = [img_name.replace('.png', '.tif') for img_name in val_img_names]
train_files = [
{"img": join(img_path, img_names[i]), "label": join(gt_path, gt_names[i]), 'name': img_names[i]}
for i in range(len(img_names))
]
val_files = [
{"img": join(val_img_path, val_img_names[i]), "label": join(val_gt_path, val_gt_names[i]),
'name': val_img_names[i]}
for i in range(len(val_img_names))
]
print(
f"training image num: {len(train_files)}, validation image num: {len(val_files)}"
)
def load_img(img):
ret = io.imread(img)
if len(ret.shape) == 2:
ret = gray2rgb(ret)
return ret.astype('float32')
def load_ann(ann):
ret = np.squeeze(io.imread(ann)).astype('float32')
return ret
# %% define transforms for image and segmentation
train_transforms = Compose(
[
Lambdad(('img',), load_img),
Lambdad(('label',), load_ann),
# LoadImaged(
# keys=["img", "label"], reader=PILReader, dtype=np.float32
# ), # image three channels (H, W, 3); label: (H, W)
AddChanneld(keys=["label"], allow_missing_keys=True), # label: (1, H, W)
AsChannelFirstd(
keys=["img"], channel_dim=-1, allow_missing_keys=True
), # image: (3, H, W)
# ScaleIntensityd(
# keys=["img"], allow_missing_keys=True
# ), # Do not scale label
# SpatialPadd(keys=["img", "label"], spatial_size=args.input_size),
# RandSpatialCropd(
# keys=["img", "label"], roi_size=args.input_size, random_size=False
# ),
RandAxisFlipd(keys=["img", "label"], prob=0.5),
RandRotate90d(keys=["img", "label"], prob=0.5, spatial_axes=[0, 1]),
# # intensity transform
RandGaussianNoised(keys=["img"], prob=0.25, mean=0, std=0.1),
RandAdjustContrastd(keys=["img"], prob=0.25, gamma=(1, 2)),
RandGaussianSmoothd(keys=["img"], prob=0.25, sigma_x=(1, 2)),
RandHistogramShiftd(keys=["img"], prob=0.25, num_control_points=3),
RandZoomd(
keys=["img", "label"],
prob=0.15,
min_zoom=0.5,
max_zoom=2.0,
mode=["area", "nearest"],
),
EnsureTyped(keys=["img", "label"]),
]
)
val_transforms = Compose(
[
Lambdad(('img',), load_img),
Lambdad(('label',), load_ann),
# LoadImaged(keys=["img", "label"], reader=PILReader, dtype=np.float32),
AddChanneld(keys=["label"], allow_missing_keys=True),
AsChannelFirstd(keys=["img"], channel_dim=-1, allow_missing_keys=True),
# ScaleIntensityd(keys=["img"], allow_missing_keys=True),
# AsDiscreted(keys=['label'], to_onehot=3),
# CenterSpatialCropd(
# keys=["img", "label"], roi_size=args.input_size
# ),
EnsureTyped(keys=["img", "label"]),
]
)
# % define dataset, data loader
# check_ds = monai.data.Dataset(data=train_files, transform=train_transforms)
check_ds = HoverDataset(data=train_files, transform=train_transforms, mask_shape=(args.mask_size, args.mask_size))
print(len(check_ds))
tmp = check_ds[0]
print(tmp['img'].shape, tmp['label'].shape, tmp['hv_map'].shape, tmp['np_map'].shape)
check_loader = DataLoader(check_ds, batch_size=1, num_workers=4)
check_data = monai.utils.misc.first(check_loader)
print(
"sanity check:",
check_data["img"].shape,
torch.max(check_data["img"]),
check_data["label"].shape,
torch.max(check_data["label"]),
check_data["hv_map"].shape,
torch.max(check_data["hv_map"]),
check_data["np_map"].shape,
torch.max(check_data["np_map"]),
)
# %% create a training data loader
# train_ds = monai.data.Dataset(data=train_files, transform=train_transforms)
train_ds = HoverDataset(data=train_files, transform=train_transforms, mask_shape=(args.mask_size, args.mask_size))
print(len(train_ds))
# example = train_ds[0]
# plt.imshow(np.array(example['img']).transpose(1,2,0).astype('uint8'))
# plt.imshow(np.squeeze(example['np_map'].numpy()).astype('uint8'), 'gray')
# plt.imshow(example['hv_map'].numpy()[...,0])
# plt.imshow(example['hv_map'].numpy()[..., 1])
# plt.show()
# use batch_size=2 to load images and use RandCropByPosNegLabeld to generate 2 x 4 images for network training
train_loader = DataLoader(
train_ds,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=torch.cuda.is_available(),
)
# create a validation data loader
# val_ds = monai.data.Dataset(data=val_files, transform=val_transforms)
val_ds = HoverDataset(data=val_files, transform=val_transforms, mask_shape=(args.mask_size, args.mask_size))
val_loader = DataLoader(val_ds, batch_size=1, shuffle=False, num_workers=4)
model = FlexibleUNet_hv(
in_channels=3,
out_channels=2+2,
backbone='convnext_small',
pretrained=True,
n_rays=2,
prob_out_channels=2,
)
activatation = nn.ReLU()
sigmoid = nn.Sigmoid()
initial_lr = args.initial_lr
optimizer = torch.optim.AdamW(model.parameters(), initial_lr)
scheduler = StepLR(optimizer, 100, 0.1)
#if pre_trained == True:
#print('Load pretrained weights...')
#checkpoint = torch.load('/data2/yuxinyi/stardist_pytorch/pretrained/overall/330.pth')
#model.load_state_dict(checkpoint['model_state_dict'])
# model = DataParallel(model)
model = model.to('cuda')
# start a typical PyTorch training
max_epochs = args.max_epochs
val_interval = args.val_interval
save_interval = args.save_interval
epoch_loss_values = []
writer = SummaryWriter(model_path)
#*# record loss and f1
loss_file = f'{work_dir}/train_loss.txt'
f1_file = f'{work_dir}/train_loss.txt'
if os.path.exists(loss_file):
os.remove(loss_file)
if os.path.exists(f1_file):
os.remove(f1_file)
#*#
for epoch in range(1, args.max_epochs):
model.train()
epoch_loss = 0
running_np_1, running_np_2, running_hv_1, running_hv_2 = 0.0, 0.0, 0.0, 0.0
stream = tqdm(train_loader)
for step, batch_data in enumerate(stream, start=1):
#*# hv map
inputs, true_np, true_hv = batch_data["img"], batch_data["np_map"], batch_data['hv_map']
true_np = true_np.to("cuda").type(torch.int64) # NHW
true_hv = true_hv.to("cuda").type(torch.float32) # NHWC
true_np_onehot = (F.one_hot(true_np, num_classes=2)).type(torch.float32) # NHWC
inputs = torch.tensor(inputs).to('cuda')
# print(inputs.shape, true_np.shape, true_hv.shape)
optimizer.zero_grad()
pred_hv, pred_np = model(inputs) # NCHW
pred_hv = pred_hv.permute(0, 2, 3, 1).contiguous() # NHWC
pred_np = pred_np.permute(0, 2, 3, 1).contiguous() # NHWC
pred_np = F.softmax(pred_np, dim=-1)
# losses
loss_np_1 = xentropy_loss(true_np_onehot, pred_np) # bce
loss_np_2 = dice_loss(true_np_onehot, pred_np) # dice
loss_hv_1 = mse_loss(true_hv, pred_hv) # mse
loss_hv_2 = msge_loss(true_hv, pred_hv, true_np_onehot[...,1]) # msge
loss = loss_np_1 + loss_np_2 + loss_hv_1 + loss_hv_2
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_len = len(train_ds) // train_loader.batch_size
running_np_1 += loss_np_1.item()
running_np_2 += loss_np_2.item()
running_hv_1 += loss_hv_1.item()
running_hv_2 += loss_hv_2.item()
#*#
stream.set_description(
f'Epoch {epoch} | np bce: {running_np_1 / step:.4f}, np dice: {running_np_2 / step:.4f}, hv mse: {running_hv_1 / step:.4f}, hv msge: {running_hv_2 / step:.4f}')
epoch_loss /= step
epoch_loss_values.append(epoch_loss)
writer.add_scalar("train_loss", epoch_loss, epoch)
writer.add_scalar("np_bce", running_np_1 / step, epoch)
writer.add_scalar("np_dice", running_np_2 / step, epoch)
writer.add_scalar("hv_mse", running_hv_1 / step, epoch)
writer.add_scalar("hv_msge", running_hv_2 / step, epoch)
print(f"epoch {epoch} average loss: {epoch_loss:.4f}, lr: {optimizer.param_groups[0]['lr']}")
#*# record
with open(loss_file, 'a') as f:
f.write(f'Epoch{epoch}\tloss:{epoch_loss:.4f}\tnp_bce:{running_np_1/step:.4f}\tnp_dice:{running_np_2/step:.4f}\thv_mse:{running_hv_1/step:.4f}\thv_msge:{running_hv_2/step:.4f}\n')
#*#
checkpoint = {
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"loss": epoch_loss_values,
}
if epoch % save_interval == 0:
torch.save(checkpoint, join(model_path, str(epoch) + ".pth"))
running_np_acc, running_np_dice, running_hv_mse = 0.0, 0.0, 0.0
stream_val = tqdm(val_loader)
for step, batch_data in enumerate(stream_val, start=1):
raw_data = valid_step(model, batch_data)['raw']
track_dict = proc_valid_step_output(raw_data)
running_np_acc += track_dict['np_acc']
running_np_dice += track_dict['np_dice']
running_hv_mse += track_dict['hv_mse']
stream.set_description(f'Epoch {epoch} | np acc: {running_np_acc / step:.4f}, np dice: {running_np_dice / step:.4f}, hv mse: {running_hv_mse / step:.4f}')
writer.add_scalar("np_acc", running_np_acc / step, epoch)
writer.add_scalar("np_dice", running_np_dice / step, epoch)
writer.add_scalar("hv_mse", running_hv_mse / step, epoch)
print(f'Epoch {epoch} | np acc: {running_np_acc / step:.4f}, np dice: {running_np_dice / step:.4f}, hv mse: {running_hv_mse / step:.4f}')
#*# record
with open(loss_file, 'a') as f:
f.write(f'Validation | Epoch{epoch}\tloss:{epoch_loss:.4f}\tnp_acc:{running_np_acc/step:.4f}\tnp_dice:{running_np_dice/step:.4f}\thv_mse:{running_hv_mse/step:.4f}\n')
#*#
scheduler.step()
if __name__ == "__main__":
main()