Skip to content

Latest commit

 

History

History
43 lines (31 loc) · 1.64 KB

README.md

File metadata and controls

43 lines (31 loc) · 1.64 KB

ACM Projects' Fall 2024 AWS Workshop Demo

Resources you'll need as you go through the workshop

  • Download the needed Iris data set from UC Irvine's Machine Learning Repository here and unpack into Jupyter project in AWS SageMaker
  • Download the machine learning model notebook example here
    • Upload into the SageMaker Jupyter
  • Copy the Lambda Function example below and paste the code into the Lambda function in AWS
    import json
    
    import boto3
    import ast
    
    def lambda_handler(event, context):
      
      runtime_client = boto3.client('runtime.sagemaker')
      
      endpoint_name = 'xgboost-2024-10-20-20-12-30-397'
      
      sample = '{},{},{},{}'.format(ast.literal_eval(event['body'])['x1'],
                                  ast.literal_eval(event['body'])['x2'],
                                  ast.literal_eval(event['body'])['x3'],
                                  ast.literal_eval(event['body'])['x4'])
      
      response = runtime_client.invoke_endpoint(EndpointName = endpoint_name,
                                      ContentType = 'text/csv',
                                      Body = sample)
      
      result = int(float(response['Body'].read().decode('ascii')))
      
      print(result)
      
      return {
          'statusCode': 200,
          'headers': {
              'Access-Control-Allow-Origin': '*'
          },
          'body': json.dumps({'prediction' : result})
      }
    
    

Further information can be found in the tutorial video here that this workshop demo is based on