forked from yxlijun/S3FD.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare_hand_dataset.py
53 lines (41 loc) · 1.58 KB
/
prepare_hand_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#-*-coding:utf-8 -*-
from __future__ import print_function
from __future__ import division
from __future__ import absolute_import
import os
import numpy as np
import csv
from data.config import cfg
if not os.path.exists('./data'):
os.makedirs('./data')
TRAIN_ROOT = os.path.join(cfg.HAND.DIR, 'images', 'train')
TEST_ROOT = os.path.join(cfg.HAND.DIR, 'images', 'test')
def generate_file(csv_file, target_file, root):
filenames = []
bboxes = []
with open(csv_file, 'rb') as sd:
lines = csv.DictReader(sd)
for line in lines:
filenames.append(os.path.join(root, line['filename']))
bbox = [int(line['xmin']), int(line['ymin']),
int(line['xmax']), int(line['ymax'])]
bboxes.append(bbox)
filenames = np.array(filenames)
bboxes = np.array(bboxes)
uniq_filenames = np.unique(filenames)
fout = open(target_file, 'w')
for name in uniq_filenames:
idx = np.where(filenames == name)[0]
bbox = bboxes[idx]
fout.write('{} '.format(name))
fout.write(('{} ').format(len(bbox)))
for loc in bbox:
x1, y1, x2, y2 = loc
fout.write('{} {} {} {} '.format(x1, y1, x2, y2))
fout.write('\n')
fout.close()
if __name__ == '__main__':
train_csv_file = os.path.join(TRAIN_ROOT, 'train_labels.csv')
test_csv_file = os.path.join(TEST_ROOT, 'test_labels.csv')
generate_file(train_csv_file, cfg.HAND.TRAIN_FILE, TRAIN_ROOT)
generate_file(test_csv_file, cfg.HAND.VAL_FILE, TEST_ROOT)