-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathSphere.cpp
executable file
·167 lines (128 loc) · 5.44 KB
/
Sphere.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#include <stdio.h>
#include <iostream>
#include <Eigen/Sparse>
#include <ceres/ceres.h>
#include "Sphere.h"
class PoseGraphError : public ceres::SizedCostFunction<6, 6, 6> {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
PoseGraphError(int i, Sophus::SE3d &T_ij, Eigen::Matrix<double, 6, 6> &information) {
T_ij_ = T_ij;
Eigen::LLT<Eigen::Matrix<double, 6, 6>> llt(information);
sqrt_information_ = llt.matrixL();
id = i;
}
virtual bool Evaluate(double const* const* parameters,
double* residuals,
double** jacobians) const {
//printf("param %d:[%lf, %lf, %lf, %lf, %lf, %lf]\n", id, (*parameters)[0], (*parameters)[1], (*parameters)[2], (*parameters)[3], (*parameters)[4], (*parameters)[5]);
Eigen::Map<const Eigen::Matrix<double, 6, 1>> lie_i(*parameters);
Eigen::Map<const Eigen::Matrix<double, 6, 1>> lie_j(*(parameters + 1));
// Eigen::Matrix<double, 6, 1> lie_i;
// Eigen::Matrix<double, 6, 1> lie_j;
//
// for(int i = 0; i < 6; ++i) {
// lie_i(i, 0) = parameters[0][i];
// lie_j(i, 0) = parameters[0][i];
// }
//
Eigen::Matrix<double, 6, 6> Jac_i;
Eigen::Matrix<double, 6, 6> Jac_j;
//printf("get lie\n");
Sophus::SE3d T_i = Sophus::SE3d::exp(lie_i);
//std::cout << T_i.matrix3x4() << std::endl;
Sophus::SE3d T_j = Sophus::SE3d::exp(lie_j);
Sophus::SE3d Tij_estimate = T_i * T_j.inverse();
Sophus::SE3d err = Tij_estimate * T_ij_.inverse();
//std::cout << err.log() << std::endl;
Eigen::Matrix<double, 6, 6> Jl;
Jl.block(3, 3, 3, 3) = Jl.block(0, 0, 3, 3) = Sophus::SO3d::hat(err.so3().log());
Jl.block(0, 3, 3, 3) = Sophus::SO3d::hat(err.translation());
Jl.block(3, 0, 3, 3) = Eigen::Matrix3d::Zero();
Eigen::Matrix<double, 6, 6> I = Eigen::Matrix<double, 6, 6>::Identity();
Jl.noalias() = sqrt_information_ * (I - 0.5 * Jl);
Jac_i = Jl;
Eigen::Matrix<double, 6, 1> err_ = sqrt_information_ * err.log();
const Eigen::Matrix<double, 3, 3>& R = Tij_estimate.rotationMatrix();
Eigen::Matrix<double, 6, 6> adj;
adj.block<3, 3>(3, 3) = adj.block<3, 3>(0, 0) = R;
adj.block<3, 3>(0, 3) = Sophus::SO3d::hat(Tij_estimate.translation()) * R;
adj.block<3, 3>(3, 0) = Eigen::Matrix<double, 3, 3>::Zero(3, 3);
// printf("compute adj ok!\n");
Jac_j = -Jac_i * adj;
int k = 0;
for(int i = 0; i < 6; i++) {
residuals[i] = err_(i);
if(jacobians) {
for (int j = 0; j < 6; ++j) {
if (jacobians[0])
jacobians[0][k] = Jac_i(i, j);
if (jacobians[1])
jacobians[1][k] = Jac_j(i, j);
k++;
}
}
}
return true;
}
private:
int id;
Sophus::SE3d T_ij_;
Eigen::Matrix<double, 6, 6> sqrt_information_;
};
Sphere::Sphere()
{
}
class CERES_EXPORT SE3Parameterization : public ceres::LocalParameterization {
public:
virtual ~SE3Parameterization() {}
virtual bool Plus(const double* x,
const double* delta,
double* x_plus_delta) const;
virtual bool ComputeJacobian(const double* x,
double* jacobian) const;
virtual int GlobalSize() const { return 6; }
virtual int LocalSize() const { return 6; }
};
bool SE3Parameterization::ComputeJacobian(const double *x, double *jacobian) const {
ceres::MatrixRef(jacobian, 6, 6) = ceres::Matrix::Identity(6, 6);
return true;
}
bool SE3Parameterization::Plus(const double* x,
const double* delta,
double* x_plus_delta) const {
Eigen::Map<const Eigen::Matrix<double, 6, 1>> lie(x);
Eigen::Map<const Eigen::Matrix<double, 6, 1>> delta_lie(delta);
Sophus::SE3d T = Sophus::SE3d::exp(lie);
Sophus::SE3d delta_T = Sophus::SE3d::exp(delta_lie);
Eigen::Matrix<double, 6, 1> x_plus_delta_lie = (delta_T * T).log();
for(int i = 0; i < 6; ++i) x_plus_delta[i] = x_plus_delta_lie(i, 0);
return true;
}
bool Sphere::optimize(int iter_) {
if(vertexes.empty() == true || edges.empty() == true)
return false;
ceres::Problem problem;
for(size_t i = 0; i < edges.size(); ++i) {
ceres::CostFunction* costFun = new PoseGraphError(i, edges[i].pose, edges[i].infomation);
problem.AddResidualBlock(costFun, new ceres::HuberLoss(1.5), vertexes[edges[i].i].pose.data(),
vertexes[edges[i].j].pose.data());
}
for(size_t i = 0; i < vertexes.size(); ++i) {
problem.SetParameterization(vertexes[i].pose.data(), new SE3Parameterization());
}
//printf("optimization start!\n");
ceres::Solver::Options options;
options.dynamic_sparsity = true;
options.max_num_iterations = iter_;
options.sparse_linear_algebra_library_type = ceres::SUITE_SPARSE;
options.minimizer_type = ceres::TRUST_REGION;
options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY;
options.trust_region_strategy_type = ceres::DOGLEG;
options.minimizer_progress_to_stdout = true;
options.dogleg_type = ceres::SUBSPACE_DOGLEG;
ceres::Solver::Summary summary;
ceres::Solve(options, &problem, &summary);
std::cout << summary.BriefReport() << "\n";
return true;
}