-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathICPSimulation.h
69 lines (54 loc) · 1.88 KB
/
ICPSimulation.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
//
// Created by lancelot on 3/15/17.
//
#ifndef PNP_PNPSIMULATION_H
#define PNP_PNPSIMULATION_H
#include <boost/math/distributions.hpp>
#include <boost/math/distributions/normal.hpp>
#include <boost/random.hpp>
#include <g2o/stuff/sampler.h>
#include <g2o/core/factory.h>
#include <g2o/stuff/sampler.h>
#include <Eigen/Dense>
#include <sophus/se3.hpp>
template<typename T, int N>
void sampleGauss(const Eigen::Matrix<T, N, 1>& mean, //!< in
const Eigen::Matrix<T, N, N>& var, //!< in
std::vector<Eigen::Matrix<T, N, 1>>& vec, //!< out
int num = 50) {
g2o::GaussianSampler<Eigen::Matrix<T, N, 1>, Eigen::Matrix<T, N, N>> gaussSampler;
gaussSampler.setDistribution(var);
for (int i = 0; i < num; ++i) {
Eigen::Matrix<T, N, 1> v = mean + gaussSampler.generateSample();
vec.push_back(v);
}
}
template <typename T, int N>
Eigen::Matrix<T, N, 1> oneSampleGauss(const Eigen::Matrix<T, N, 1>& mean,
const Eigen::Matrix<T, N, N>& var) {
g2o::GaussianSampler<Eigen::Matrix<T, N, 1>, Eigen::Matrix<T, N, N>> gaussSampler;
gaussSampler.setDistribution(var);
return mean + gaussSampler.generateSample();
}
template <typename T, int N>
void sampleUniformMeans(T start, T end, std::vector<Eigen::Matrix<T, N, 1>>& vec, int num = 50) {
static boost::mt19937 rng(static_cast<unsigned>(std::time(0)));
boost::uniform_real<T> uni_dist(start, end);
Eigen::Matrix<T, N, 1> mean;
for (int i = 0; i < num; ++i) {
for(int dim = 0; dim < N; dim++)
mean(dim) = uni_dist(rng);
vec.push_back(mean);
}
}
class ICPSimulation {
public:
ICPSimulation(Sophus::SE3d& se3, Eigen::Matrix<double, 3, 3>& Var, int npt = 50);
~ICPSimulation();
void start();
private:
Sophus::SE3d real_;
Eigen::Matrix3d information_;
int npt_;
};
#endif //PNP_PNPSIMULATION_H