forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetafile.yml
203 lines (202 loc) · 7.53 KB
/
metafile.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
Collections:
- Name: Seesaw Loss
Metadata:
Training Data: LVIS
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- Softmax
- RPN
- Convolution
- Dense Connections
- FPN
- ResNet
- RoIAlign
- Seesaw Loss
Paper:
URL: https://arxiv.org/abs/2008.10032
Title: 'Seesaw Loss for Long-Tailed Instance Segmentation'
README: configs/seesaw_loss/README.md
Models:
- Name: mask-rcnn_r50_fpn_random_seesaw_loss_mstrain_2x_lvis_v1
In Collection: Seesaw Loss
Config: configs/seesaw_loss/mask-rcnn_r50_fpn_seesaw-loss_random-ms-2x_lvis-v1.py
Metadata:
Epochs: 24
Results:
- Task: Object Detection
Dataset: LVIS v1
Metrics:
box AP: 25.6
- Task: Instance Segmentation
Dataset: LVIS v1
Metrics:
mask AP: 25.0
Weights: https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r50_fpn_random_seesaw_loss_mstrain_2x_lvis_v1-a698dd3d.pth
- Name: mask-rcnn_r50_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1
In Collection: Seesaw Loss
Config: configs/seesaw_loss/mask-rcnn_r50_fpn_seesaw-loss-normed-mask_random-ms-2x_lvis-v1.py
Metadata:
Epochs: 24
Results:
- Task: Object Detection
Dataset: LVIS v1
Metrics:
box AP: 25.6
- Task: Instance Segmentation
Dataset: LVIS v1
Metrics:
mask AP: 25.4
Weights: https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r50_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1-a1c11314.pth
- Name: mask-rcnn_r101_fpn_seesaw-loss_random-ms-2x_lvis-v1
In Collection: Seesaw Loss
Config: configs/seesaw_loss/mask-rcnn_r101_fpn_seesaw-loss_random-ms-2x_lvis-v1.py
Metadata:
Epochs: 24
Results:
- Task: Object Detection
Dataset: LVIS v1
Metrics:
box AP: 27.4
- Task: Instance Segmentation
Dataset: LVIS v1
Metrics:
mask AP: 26.7
Weights: https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1-8e6e6dd5.pth
- Name: mask-rcnn_r101_fpn_seesaw-loss-normed-mask_random-ms-2x_lvis-v1
In Collection: Seesaw Loss
Config: configs/seesaw_loss/mask-rcnn_r101_fpn_seesaw-loss-normed-mask_random-ms-2x_lvis-v1.py
Metadata:
Epochs: 24
Results:
- Task: Object Detection
Dataset: LVIS v1
Metrics:
box AP: 27.2
- Task: Instance Segmentation
Dataset: LVIS v1
Metrics:
mask AP: 27.3
Weights: https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r101_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1-a0b59c42.pth
- Name: mask-rcnn_r50_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1
In Collection: Seesaw Loss
Config: configs/seesaw_loss/mask-rcnn_r50_fpn_seesaw-loss_sample1e-3-ms-2x_lvis-v1.py
Metadata:
Epochs: 24
Results:
- Task: Object Detection
Dataset: LVIS v1
Metrics:
box AP: 27.6
- Task: Instance Segmentation
Dataset: LVIS v1
Metrics:
mask AP: 26.4
Weights: https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1-392a804b.pth
- Name: mask-rcnn_r50_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1
In Collection: Seesaw Loss
Config: configs/seesaw_loss/mask-rcnn_r50_fpn_seesaw-loss-normed-mask_sample1e-3-ms-2x_lvis-v1.py
Metadata:
Epochs: 24
Results:
- Task: Object Detection
Dataset: LVIS v1
Metrics:
box AP: 27.6
- Task: Instance Segmentation
Dataset: LVIS v1
Metrics:
mask AP: 26.8
Weights: https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1-cd0f6a12.pth
- Name: mask-rcnn_r101_fpn_seesaw-loss_sample1e-3-ms-2x_lvis-v1
In Collection: Seesaw Loss
Config: configs/seesaw_loss/mask-rcnn_r101_fpn_seesaw-loss_sample1e-3-ms-2x_lvis-v1.py
Metadata:
Epochs: 24
Results:
- Task: Object Detection
Dataset: LVIS v1
Metrics:
box AP: 28.9
- Task: Instance Segmentation
Dataset: LVIS v1
Metrics:
mask AP: 27.6
Weights: https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1-e68eb464.pth
- Name: mask-rcnn_r101_fpn_seesaw-loss-normed-mask_sample1e-3-ms-2x_lvis-v1
In Collection: Seesaw Loss
Config: configs/seesaw_loss/mask-rcnn_r101_fpn_seesaw-loss-normed-mask_sample1e-3-ms-2x_lvis-v1.py
Metadata:
Epochs: 24
Results:
- Task: Object Detection
Dataset: LVIS v1
Metrics:
box AP: 28.9
- Task: Instance Segmentation
Dataset: LVIS v1
Metrics:
mask AP: 28.2
Weights: https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1-1d817139.pth
- Name: cascade-mask-rcnn_r101_fpn_seesaw-loss_random-ms-2x_lvis-v1
In Collection: Seesaw Loss
Config: configs/seesaw_loss/cascade-mask-rcnn_r101_fpn_seesaw-loss_random-ms-2x_lvis-v1.py
Metadata:
Epochs: 24
Results:
- Task: Object Detection
Dataset: LVIS v1
Metrics:
box AP: 33.1
- Task: Instance Segmentation
Dataset: LVIS v1
Metrics:
mask AP: 29.2
Weights: https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/cascade_mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1-71e2215e.pth
- Name: cascade-mask-rcnn_r101_fpn_seesaw-loss-normed-mask_random-ms-2x_lvis-v1
In Collection: Seesaw Loss
Config: configs/seesaw_loss/cascade-mask-rcnn_r101_fpn_seesaw-loss-normed-mask_random-ms-2x_lvis-v1.py
Metadata:
Epochs: 24
Results:
- Task: Object Detection
Dataset: LVIS v1
Metrics:
box AP: 33.0
- Task: Instance Segmentation
Dataset: LVIS v1
Metrics:
mask AP: 30.0
Weights: https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/cascade_mask_rcnn_r101_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1-8b5a6745.pth
- Name: cascade-mask-rcnn_r101_fpn_seesaw-loss_sample1e-3-ms-2x_lvis-v1
In Collection: Seesaw Loss
Config: configs/seesaw_loss/cascade-mask-rcnn_r101_fpn_seesaw-loss_sample1e-3-ms-2x_lvis-v1.py
Metadata:
Epochs: 24
Results:
- Task: Object Detection
Dataset: LVIS v1
Metrics:
box AP: 30.0
- Task: Instance Segmentation
Dataset: LVIS v1
Metrics:
mask AP: 29.3
Weights: https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/cascade_mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1-5d8ca2a4.pth
- Name: cascade-mask-rcnn_r101_fpn_seesaw-loss-normed-mask_sample1e-3-ms-2x_lvis-v1
In Collection: Seesaw Loss
Config: configs/seesaw_loss/cascade-mask-rcnn_r101_fpn_seesaw-loss-normed-mask_sample1e-3-ms-2x_lvis-v1.py
Metadata:
Epochs: 24
Results:
- Task: Object Detection
Dataset: LVIS v1
Metrics:
box AP: 32.8
- Task: Instance Segmentation
Dataset: LVIS v1
Metrics:
mask AP: 30.1
Weights: https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/cascade_mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1-c8551505.pth