forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
spark_sparse-convnext-small_16xb256-amp-coslr-800e_in1k.py
81 lines (75 loc) · 2.05 KB
/
spark_sparse-convnext-small_16xb256-amp-coslr-800e_in1k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
_base_ = [
'../_base_/datasets/imagenet_bs512_mae.py',
'../_base_/default_runtime.py',
]
# dataset 8 x 512
train_dataloader = dict(batch_size=256, num_workers=8)
# model settings
model = dict(
type='SparK',
input_size=224,
downsample_raito=32,
mask_ratio=0.6,
enc_dec_norm_cfg=dict(type='SparseLN2d', eps=1e-6),
enc_dec_norm_dim=768,
backbone=dict(
type='SparseConvNeXt',
arch='small',
drop_path_rate=0.2,
out_indices=(0, 1, 2, 3),
gap_before_output=False),
neck=dict(
type='SparKLightDecoder',
feature_dim=512,
upsample_ratio=32, # equal to downsample_raito
mid_channels=0,
last_act=False),
head=dict(
type='SparKPretrainHead',
loss=dict(type='PixelReconstructionLoss', criterion='L2')))
# optimizer wrapper
optimizer = dict(
type='Lamb', lr=2e-4 * 4096 / 512, betas=(0.9, 0.95), weight_decay=0.04)
optim_wrapper = dict(
type='AmpOptimWrapper',
optimizer=optimizer,
clip_grad=dict(max_norm=5.0),
paramwise_cfg=dict(
bias_decay_mult=0.0,
flat_decay_mult=0.0,
custom_keys={
'mask_token': dict(decay_mult=0.),
}))
# learning rate scheduler
param_scheduler = [
dict(
type='LinearLR',
start_factor=1e-4,
by_epoch=True,
begin=0,
end=40,
convert_to_iter_based=True),
dict(
type='CosineAnnealingLR',
T_max=760,
by_epoch=True,
begin=40,
end=800,
convert_to_iter_based=True),
dict(
type='CosineAnnealingWeightDecay',
eta_min=0.2,
T_max=800,
by_epoch=True,
begin=0,
end=800,
convert_to_iter_based=True)
]
# runtime settings
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=800)
default_hooks = dict(
logger=dict(type='LoggerHook', interval=100),
# only keeps the latest 3 checkpoints
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=2))
# randomness
randomness = dict(seed=0, diff_rank_seed=True)