-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtraining_unite_cropup.py
93 lines (79 loc) · 4.22 KB
/
training_unite_cropup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# -*- ecoding: utf-8 -*-
"""
@enviroment: pytorch 1.6.0 CUDA 9.0
@Date:2021/10/19/22:39
@File:training_transformer.py
@Author: LeiLei [email protected]
"""
import numpy as np
import torch,os
import torch.nn as nn
import sys
sys.path.append("..")
import yaml
from torch.utils.tensorboard import SummaryWriter
from models.UNITE import unite
from utils.helper_unite_cropup import *
from utils.io_func import save_dict_to_excel
from utils.io_func import make_parent_dir_list
from torch.optim.lr_scheduler import LambdaLR
from torch.optim.sgd import SGD
os.environ['CUDA_VISIBLE_DEVICES']='2'
# device_ids = [ 0,1,2,3]
import sys
module_path = os.path.abspath(os.path.join(".."))
if module_path not in sys.path:
sys.path.append(module_path)
with open("./config/model/unite_cropup.yaml") as f:
cfg_m=yaml.safe_load(f)
with open("./config/dataset/14UPU_S2_2020.yaml") as f:
cfg_d=yaml.safe_load(f)
with open("./config/dataset/14UPU_S2_2021.yaml") as f:
cfg_t=yaml.safe_load(f)
#constant variable
EPOCH=cfg_d["Model"]["epoch"]
batch_size=cfg_d["Model"]["batch_size"]
steps_per_epoch=cfg_d["Model"]["steps_per_epoch"]
device=torch.device("cuda:0")
seed=233
#models save path
model_start_path=cfg_d["File"]["model_start_path"]
summary_path=os.path.join(cfg_d["File"]["summary_path"],cfg_d["File"]["file_name"])
model_save_path=os.path.join(cfg_d["File"]["model_save_path"],cfg_d["File"]["file_name"])
train_excel_path=os.path.join(cfg_d["File"]["train_excel_path"],"train_"+cfg_d["File"]["file_name"]+".xlsx")
val_excel_path=os.path.join(cfg_d["File"]["val_excel_path"],"val_"+cfg_d["File"]["file_name"]+".xlsx")
test_excel_path=os.path.join(cfg_d["File"]["test_excel_path"],"test_"+cfg_d["File"]["file_name"]+".xlsx")
make_parent_dir_list(summary_path+"/",model_save_path+"/",os.path.dirname(train_excel_path),os.path.dirname(val_excel_path),os.path.dirname(test_excel_path))
summary=SummaryWriter(summary_path)
# category=["paddy rice","soybean","maize","peanut","water","impervious","leisure land","other vegetable"]
category=cfg_d["Class_name"]
header={"loss":["loss"],"overall":["overall"],"kappa":["kappa"],"recall":category,"precision":category,"f1":category,"Confusion matrix":category,"iou":category,"miou":["miou"]}
header_train={"loss":["loss"],"accuracy_source":["accuracy_source"],"accuracy_target":["accuracy_target"]}
#import the training data
train_loader_source=make_dataloader(cfg_d["File"]["train_npy_data_source"],cfg_d["File"]["train_npy_label_source"],cfg_d["Model"]["num_seq"],cfg_d["Model"]["num_feature"],cfg_d["Data"]["doy"],batch_size)
train_loader_target=make_dataloader(cfg_d["File"]["train_npy_data_target"],cfg_d["File"]["train_npy_label_target"],cfg_t["Model"]["num_seq"],cfg_t["Model"]["num_feature"],cfg_t["Data"]["doy"],batch_size)
test_loader_target=make_dataloader(cfg_d["File"]["test_npy_data_target"],cfg_d["File"]["test_npy_label_target"],cfg_t["Model"]["num_seq"],cfg_t["Model"]["num_feature"],cfg_t["Data"]["doy"],batch_size)
label_source=np.load(cfg_d["File"]["train_npy_label_source"])
#define the models, lose function, optimizer,scheduler
model=unite(input_dim=cfg_d["Model"]["num_feature"],num_classes=cfg_d["Model"]["num_classes"])
model.to(device)
criterion=nn.CrossEntropyLoss()
classifier_params = [
{"params": model.channel_attention.parameters(), "lr": 0.1 * cfg_m["optimizer"]["base_lr"]},
{"params": model.time_attention.parameters(), "lr": 0.1 * cfg_m["optimizer"]["base_lr"]},
{"params": model.decoder.parameters(), "lr": 1.0 * cfg_m["optimizer"]["base_lr"]}]
optimizer = SGD(
classifier_params,
cfg_m["optimizer"]["lr"],
momentum=0.9,
weight_decay=cfg_m["optimizer"]["weight_decay"],
nesterov=True,
)
lr_scheduler = LambdaLR(
optimizer, lambda x: cfg_m["optimizer"]["lr"] * (1.0 + cfg_m["optimizer"]["lr_gamma"] * float(x)) ** (-cfg_m["optimizer"]["lr_decay"])
)
train_metric_all,test_metric_all=train_model(seed,cfg_m,model,model_start_path,EPOCH,optimizer,lr_scheduler,criterion,device,
train_loader_source,train_loader_target,test_loader_target,label_source,steps_per_epoch,
batch_size,summary,model_save_path,category)
save_dict_to_excel(test_metric_all,test_excel_path,header)
save_dict_to_excel(train_metric_all,train_excel_path,header_train)