-
Notifications
You must be signed in to change notification settings - Fork 2
/
dataloader.py
301 lines (245 loc) · 12 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
#!/usr/env/bin python3.6
import io
import re
import random
from operator import itemgetter
from pathlib import Path
from itertools import repeat
from functools import partial
from typing import Any, Callable, BinaryIO, Dict, List, Match, Pattern, Tuple, Union, Optional
import torch
import numpy as np
from torch import Tensor
from PIL import Image
from torchvision import transforms
from skimage.transform import resize
from torch.utils.data import Dataset, DataLoader, Sampler
from utils import id_, map_, class2one_hot, one_hot2dist
from utils import simplex, sset, one_hot, depth, augment
F = Union[Path, BinaryIO]
D = Union[Image.Image, np.ndarray, Tensor]
resizing_fn = partial(resize, mode="constant", preserve_range=True, anti_aliasing=False)
def get_loaders(args, data_folder: str,
batch_size: int, n_class: int,
debug: bool, in_memory: bool) -> Tuple[List[DataLoader], List[DataLoader]]:
png_transform = transforms.Compose([
lambda img: img.convert('L'),
lambda img: np.array(img)[np.newaxis, ...],
lambda nd: nd / 255, # max <= 1
lambda nd: torch.tensor(nd, dtype=torch.float32)
])
color_transform = transforms.Compose([
lambda img: img.convert('RGB'),
lambda img: np.asarray(img),
lambda arr: np.rollaxis(arr, 2, 0),
lambda nd: nd / 255, # max <= 1
lambda nd: torch.tensor(nd, dtype=torch.float32)
])
npy_transform = transforms.Compose([
lambda npy: np.array(npy)[np.newaxis, ...],
lambda nd: torch.tensor(nd, dtype=torch.float32)
])
gt_transform = transforms.Compose([
lambda img: img.convert('L'),
lambda img: np.array(img)[np.newaxis, ...],
lambda nd: torch.tensor(nd, dtype=torch.int64),
partial(class2one_hot, C=n_class),
itemgetter(0)
])
dist_map_transform = transforms.Compose([
lambda img: np.array(img)[np.newaxis, ...],
lambda nd: torch.tensor(nd, dtype=torch.int64),
partial(class2one_hot, C=n_class),
itemgetter(0),
lambda t: t.cpu().numpy(),
one_hot2dist,
lambda nd: torch.tensor(nd, dtype=torch.float32)
])
dummy_gt = transforms.Compose([
lambda img: np.array(img),
lambda nd: torch.zeros((n_class, *(nd.shape)), dtype=torch.int64)
])
losses_list = eval(args.losses)
if depth(losses_list) == 1:
losses_list = [losses_list]
list_bounds_generators: List[List[Callable]] = []
for losses in losses_list:
tmp = []
for _, _, bounds_name, bounds_params, fn, _ in losses:
if bounds_name is None:
tmp.append(lambda *a: torch.zeros(n_class, 1, 2))
continue
bounds_class = getattr(__import__('bounds'), bounds_name)
tmp.append(bounds_class(C=args.n_class, fn=fn, **bounds_params))
list_bounds_generators.append(tmp)
list_folders_list = eval(args.folders)
if depth(list_folders_list) == 1: # For compatibility reasons, avoid changing all the previous configuration files
list_folders_list = [list_folders_list]
# print(folders_list)
# Prepare the datasets and dataloaders
print()
train_loaders = []
# val_loader = None
for i, (train_topfolder, folders_list, bounds_generators) in \
enumerate(zip(args.training_folders, list_folders_list, list_bounds_generators)):
folders, trans, are_hots = zip(*folders_list)
print(f">> {i}th training loader: {train_topfolder} with {folders}")
# Create partial functions: Easier for readability later (see the difference between train and validation)
gen_dataset = partial(SliceDataset,
transforms=trans,
are_hots=are_hots,
debug=debug,
C=n_class,
in_memory=in_memory,
bounds_generators=bounds_generators)
data_loader = partial(DataLoader,
num_workers=batch_size + 5,
pin_memory=True)
train_folders: List[Path] = [Path(data_folder, train_topfolder, f) for f in folders]
# I assume all files have the same name inside their folder: makes things much easier
train_names: List[str] = map_(lambda p: str(p.name), train_folders[0].glob("*"))
train_set = gen_dataset(train_names,
train_folders)
if args.group_train:
train_sampler = PatientSampler(train_set, args.grp_regex, shuffle=True)
train_loader = data_loader(train_set,
batch_sampler=train_sampler)
else:
train_loader = data_loader(train_set,
batch_size=batch_size,
shuffle=True,
drop_last=True)
train_loaders.append(train_loader)
if i == args.val_loader_id or (args.val_loader_id == -1 and (i + 1) == len(args.training_folders)):
print(f">> Validation dataloader (id {args.val_loader_id}), {train_topfolder} {folders}")
val_folders: List[Path] = [Path(data_folder, args.validation_folder, f) for f in folders]
val_names: List[str] = map_(lambda p: str(p.name), val_folders[0].glob("*"))
val_set = gen_dataset(val_names,
val_folders)
val_sampler = PatientSampler(val_set, args.grp_regex, shuffle=False) if args.group else None
val_batch_size = 1 if val_sampler else batch_size
val_loader = data_loader(val_set,
batch_sampler=val_sampler,
batch_size=val_batch_size)
return train_loaders, [val_loader]
class SliceDataset(Dataset):
def __init__(self, filenames: List[str], folders: List[Path], are_hots: List[bool],
bounds_generators: List[Callable], transforms: List[Callable], debug=False, quiet=False,
C=4, in_memory: bool = False, spacing_dict: Dict[str, Tuple[float, float]] = None,
augment: bool = False, ignore_norm: bool = False) -> None:
self.folders: List[Path] = folders
self.transforms: List[Callable[[D], Tensor]] = transforms
assert len(self.transforms) == len(self.folders)
self.are_hots: List[bool] = are_hots
self.filenames: List[str] = filenames
self.debug = debug
self.C: int = C # Number of classes
self.in_memory: bool = in_memory
self.quiet: bool = quiet
self.bounds_generators: List[Callable] = bounds_generators
self.spacing_dict: Optional[Dict[str, Tuple[float, float]]] = spacing_dict
self.augment: bool = augment
self.ignore_norm: bool = ignore_norm
assert len(self.bounds_generators) == (len(self.folders) - 2)
if self.debug:
self.filenames = self.filenames[:10]
assert self.check_files() # Make sure all file exists
if not self.quiet:
print(f">> Initializing {self.__class__.__name__} with {len(self.filenames)} images")
if self.augment:
print("> Will augment data online")
# Load things in memory if needed
self.files: List[List[F]] = SliceDataset.load_images(self.folders, self.filenames, self.in_memory)
assert len(self.files) == len(self.folders)
for files in self.files:
assert len(files) == len(self.filenames)
def check_files(self) -> bool:
for folder in self.folders:
if not Path(folder).exists():
return False
for f_n in self.filenames:
if not Path(folder, f_n).exists():
return False
return True
@staticmethod
def load_images(folders: List[Path], filenames: List[str], in_memory: bool, quiet=False) -> List[List[F]]:
def load(folder: Path, filename: str) -> F:
p: Path = Path(folder, filename)
if in_memory:
with open(p, 'rb') as data:
res = io.BytesIO(data.read())
return res
return p
if in_memory and not quiet:
print("> Loading the data in memory...")
files: List[List[F]] = [[load(f, im) for im in filenames] for f in folders]
return files
def __len__(self):
return len(self.filenames)
def __getitem__(self, index: int) -> List[Any]:
filename: str = self.filenames[index]
path_name: Path = Path(filename)
images: List[D]
if path_name.suffix == ".png":
images = [Image.open(files[index]) for files in self.files]
elif path_name.suffix == ".npy":
images = [np.load(files[index]) for files in self.files]
else:
raise ValueError(filename)
if self.spacing_dict:
dx, dy = self.spacing_dict[path_name.stem]
arrs = [np.array(im) for im in images]
w, h = arrs[0].shape
nw, nh = int(w / dx), int(h / dy)
images = [resizing_fn(arr, (nw, nh)) for arr in arrs]
if self.augment:
images = augment(*images)
# Final transforms and assertions
assert len(images) == len(self.folders) == len(self.transforms)
t_tensors: List[Tensor] = [tr(e) for (tr, e) in zip(self.transforms, images)]
# main image is between 0 and 1
if not self.ignore_norm:
assert 0 <= t_tensors[0].min() and t_tensors[0].max() <= 1, (t_tensors[0].min(), t_tensors[0].max())
_, w, h = t_tensors[0].shape
for ttensor in t_tensors[1:]: # Things should be one-hot or at least have the shape
assert ttensor.shape == (self.C, w, h), (ttensor.shape, self.C, w, h)
for ttensor, is_hot in zip(t_tensors, self.are_hots): # All masks (ground truths) are class encoded
if is_hot:
assert one_hot(ttensor, axis=0), torch.einsum("cwh->wh", ttensor)
img, gt = t_tensors[:2]
bounds = [f(img, gt, t, filename) for f, t in zip(self.bounds_generators, t_tensors[2:])]
# return t_tensors + [filename] + bounds
return [filename] + t_tensors + bounds
class PatientSampler(Sampler):
def __init__(self, dataset: SliceDataset, grp_regex, shuffle=False) -> None:
filenames: List[str] = dataset.filenames
# Might be needed in case of escape sequence fuckups
# self.grp_regex = bytes(grp_regex, "utf-8").decode('unicode_escape')
self.grp_regex = grp_regex
# Configure the shuffling function
self.shuffle: bool = shuffle
self.shuffle_fn: Callable = (lambda x: random.sample(x, len(x))) if self.shuffle else id_
# print(f"Grouping using {self.grp_regex} regex")
# assert grp_regex == "(patient\d+_\d+)_\d+"
# grouping_regex: Pattern = re.compile("grp_regex")
grouping_regex: Pattern = re.compile(self.grp_regex)
stems: List[str] = [Path(filename).stem for filename in filenames] # avoid matching the extension
matches: List[Match] = map_(grouping_regex.match, stems)
patients: List[str] = [match.group(1) for match in matches]
unique_patients: List[str] = list(set(patients))
assert len(unique_patients) < len(filenames)
print(f"Found {len(unique_patients)} unique patients out of {len(filenames)} images ; regex: {self.grp_regex}")
self.idx_map: Dict[str, List[int]] = dict(zip(unique_patients, repeat(None)))
for i, patient in enumerate(patients):
if not self.idx_map[patient]:
self.idx_map[patient] = []
self.idx_map[patient] += [i]
# print(self.idx_map)
assert sum(len(self.idx_map[k]) for k in unique_patients) == len(filenames)
# print("Patient to slices mapping done")
def __len__(self):
return len(self.idx_map.keys())
def __iter__(self):
values = list(self.idx_map.values())
shuffled = self.shuffle_fn(values)
return iter(shuffled)