-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathlimo_get_effect_size.m
271 lines (247 loc) · 10.6 KB
/
limo_get_effect_size.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
function [name,clusters] = limo_get_effect_size(file,mask)
% simple routine to compute effect sizes from a result file
%
% FORMATS limo_get_effect_size
% [name] = limo_get_effect_size(file)
% [name,clusters] = limo_get_effect_size(file,mask)
%
% INPUTS file: is a result file like a t-test or ANOVA
% mask: is optional ([] by default) and is a N-ary matrix of clusters
%
% OUTPUTS name: is the name of the file created
% [file_name]_effectsize.mat is created with Cohen's d or patial
% eta square values at each cell
% clusters: if mask is provided as input, it returns a structure with
% summary statistics per cluster for the computed effect size
% (not for the T/F statistics, use limo_get_summary.m)
% - eigenmode is the 'direction' of the effect size (usually,
% clusters are right skewed and thus it represents
% better the 'average' effect size)
% - median provided as a comparison point to eigen mode
% - mean provided as a comparison point to eigen mode
% - min and max for completeness
%
% If no inputs and outputs are given, the user is prompted.
% If a mask variable exist in workspace, the user is asked if one should
% use it, if so the variable clusters_summary_stats is returned in the
% worspace, in addition of the effec_size file writen on the hard drive.
%
% Cyril Pernet 2022
% ------------------------------
% Copyright (C) LIMO Team 2022
name = [];
clusters = [];
%% reminder of standardized effect sizes
% Cohen's d = (u1-u2) / std
% Partial eta^2 np^2 = (df*F) / (df*F+dfe)
% Mahalanobis distance D = (u1-u2)*inv(S)*(u1-u2) = % Hotelling Tsquare / N
%% check inputs
if nargin == 0
% no input, ask user to select a file
[file,filepath] = uigetfile('.mat','select a LIMO stat file');
if isempty(file)
return
else
file = fullfile(filepath,file);
end
% no input, check if user want to use current mask
ismask = evalin( 'base', 'exist(''mask'',''var'') == 1' );
if ismask
if exist('questdlg2','file')
opt = questdlg2('A mask variable exists in the workspace, do you want to use it to additionally return cluster summary stats?','option');
else
opt = questdlg('A mask variable exists in the workspace, do you want to use it to additionally return cluster summary stats?','option');
end
if strcmpi(opt,'yes')
mask = evalin('base','mask');
end
else
msg = sprintf('no mask found in the workspace, \n it is recommended to image 1st the stat file to also have cluster summary stats if using clustering');
warning(msg) %#ok<SPWRN>
end
end
[filepath,filename,ext]=fileparts(file);
if isempty(filepath)
filepath = pwd;
end
filename = [filename ext];
if ~exist(fullfile(filepath,filename),'file')
error('file %s not found', filename)
end
if ~exist(fullfile(filepath,'LIMO.mat'),'file')
error('cannot find a LIMO.mat in the same filder as this file, this is required for this function to work')
else
LIMO = load(fullfile(filepath,'LIMO.mat'));
LIMO = LIMO.LIMO;
end
%% compute effect sizes based on design
if contains(filename,'one_sample','IgnoreCase',true) || contains(filename,'two_samples','IgnoreCase',true) || ...
contains(filename,'paired_samples','IgnoreCase',true)
T = load(fullfile(filepath,filename));
T = T.(cell2mat(fieldnames(T)));
if numel(size(T)) == 3
mu = squeeze(T(:,:,1));
se = squeeze(T(:,:,2));
df = squeeze(T(:,:,3));
else
mu = squeeze(T(:,:,:,1));
se = squeeze(T(:,:,:,2));
df = squeeze(T(:,:,:,3));
end
n = df+1;
effect_size = mu ./ (se.*sqrt(n));
name = fullfile(filepath,[filename(1:end-4) '_Cohensd.mat']);
elseif contains(LIMO.design.name,'regression','IgnoreCase',true) && ~contains(LIMO.design.name,'Repeated','IgnoreCase',true) || ...
contains(LIMO.design.name,'ANOVA') && ~contains(LIMO.design.name,'Repeated','IgnoreCase',true) || ...
contains(LIMO.design.name,'ANCOVA') && ~contains(LIMO.design.name,'Repeated','IgnoreCase',true)
stats = load(fullfile(filepath,filename));
stats = stats.(cell2mat(fieldnames(stats)));
if numel(size(stats)) == 3
if size(stats,3) == 2
stats = squeeze(stats(:,:,1));
else
if contains(filename,'R2')
R2 = squeeze(stats(:,:,1));
else
mu = squeeze(stats(:,:,1));
se = squeeze(stats(:,:,2));
df = squeeze(stats(:,:,3));
stats = squeeze(stats(:,:,4));
end
end
else
if size(stats,4) == 2
stats = squeeze(stats(:,:,:,1));
else
if contains(filename,'R2')
R2 = squeeze(stats(:,:,:,1));
else
mu = squeeze(stats(:,:,:,1));
se = squeeze(stats(:,:,:,2));
df = squeeze(stats(:,:,:,3));
stats = squeeze(stats(:,:,:,4));
end
end
end
if contains(filename,'con')
n = df+1;
effect_size = mu ./ (se.*sqrt(n));
name = fullfile(filepath,[filename(1:end-4) '_Cohensd.mat']);
else
if contains(LIMO.design.name,'regression','IgnoreCase',true) && ...
contains(filename,'Covariate')
A = LIMO.model.continuous_df(1)*stats;
B = (A+repmat(LIMO.model.continuous_df(2),size(A,1),size(A,2)));
effect_size = A ./B ;
name = fullfile(filepath,[filename(1:end-4) '_PartialEta2.mat']);
elseif contains(LIMO.design.name,'regression','IgnoreCase',true) && ...
contains(filename,'R2')
effect_size = R2 ./ (1-R2);
name = fullfile(filepath,[filename(1:end-4) '_Cohensf2.mat']);
else
if contains(LIMO.design.name,'ANOVA')
A = stats.*repmat(LIMO.design.df,1,size(stats,2));
B = A+LIMO.design.dfe;
elseif contains(LIMO.design.name,'ANCOVA')
if contains(filename,'condition','IgnoreCase',true)
A = LIMO.model.conditions_df(1).*stats;
B = A+repmat(LIMO.model.conditions_df(2),size(A,1),size(A,2));
elseif contains(filename,'covariate','IgnoreCase',true)
A = LIMO.model.continuous_df(1).*stats;
B = A+repmat(LIMO.model.continuous_df(2),size(A,1),size(A,2));
end
end
effect_size = A ./B ;
name = fullfile(filepath,[filename(1:end-4) '_PartialEta2.mat']);
end
end
elseif contains(LIMO.design.name,'Repeated','IgnoreCase',true) % All stuffs for repeated measures ANOVA
F = load(fullfile(filepath,filename));
F = F.(cell2mat(fieldnames(F)));
if numel(size(F)) == 3
if size(F,3) == 2
F = squeeze(F(:,:,1));
else
df = squeeze(F(:,:,3));
dfe = size(LIMO.design.X,1)/prod(LIMO.design.repeated_measure) - df;
F = squeeze(F(:,:,4));
end
else
if size(F,4) == 2
F = squeeze(F(:,:,:,1));
else
df = squeeze(F(:,:,:,3));
dfe = size(LIMO.design.X,1)/prod(LIMO.design.repeated_measure) - df;
F = squeeze(F(:,:,:,4));
end
end
if ~contains(filename,'Rep_ANOVA_Interaction') && ~contains(filename,'Rep_ANOVA_Gp')
if contains(filename,'Main_effect','IgnoreCase',true)
index1 = strfind(filename,'Main_effect')+length('Main_effect')+1;
index2 = max(strfind(filename,'_'))-1;
effect_nb = eval(filename(index1:index2));
elseif contains(filename,'Interaction','IgnoreCase',true)
index1 = strfind(filename,'Interaction')+length('Interaction')+1;
index2 = max(strfind(filename,'_'))-1;
effect_nb = eval(filename(index1:index2));
else
index1 = strfind(filename,'ess')+length('ess')+1;
effect_nb = eval(filename(index1:end-4));
end
if ~exist('df','var')
df = repmat(squeeze(LIMO.design.df(:,effect_nb)),[1 size(F,2)]);
dfe = repmat(squeeze(LIMO.design.dfe(:,effect_nb)),[1 size(F,2)]);
end
T2 = F.*(df./dfe);
effect_size = T2 ./ size(LIMO.design.X,1)/prod(LIMO.design.repeated_measure);
name = fullfile(filepath,[filename(1:end-4) '_MahalanobisD.mat']);
elseif contains(filename,'Rep_ANOVA_Gp')
A = (LIMO.design.group.df'.*F);
B = (A+repmat(LIMO.design.group.dfe',1,size(A,2)));
effect_size = A ./B ;
name = fullfile(filepath,[filename(1:end-4) '_PartialEta2.mat']);
elseif contains(filename,'Rep_ANOVA_Interaction')
effect_nb = filename(max(strfind(filename,'_'))+1:end-4);
position = contains(LIMO.design.effects,'Interaction');
for v=1:size(effect_nb,2)
position = position .* contains(LIMO.design.effects,effect_nb(v));
end
effect_nb = find(position);
df = squeeze(LIMO.design.df(:,effect_nb));
dfe = squeeze(LIMO.design.dfe(:,effect_nb));
T2 = F.*repmat((df./dfe),1,size(F,2));
N = size(LIMO.design.X,1)/size(LIMO.design.C{effect_nb},2);
effect_size = T2 ./ N;
name = fullfile(filepath,[filename(1:end-4) '_MahalanobisD.mat']);
else
N = size(LIMO.design.X,1)/prod(LIMO.design.repeated_measure);
T2 = F.*(df./(N-df));
effect_size = T2 ./ N;
end
end
if exist('name','var')
save(name,'effect_size');
else
error('effect size not computed, likely filename not handled')
end
%% deal with clusters
% --------------------
if exist('mask','var')
% quickly make if N-ary if binary
if length(unique(mask)) == 2
mask = limo_findcluster(mask,LIMO.data.neighbouring_matrix,2);
end
num = unique(mask);
num(num==0) = [];
for c = size(num,2):-1:1
data = effect_size(mask == num(c));
clusters(c).eigenmode = sqrt(eig(data'*data)/length(data));
clusters(c).median = median(data);
clusters(c).mean = mean(data);
clusters(c).min = min(data);
clusters(c).max = max(data);
end
if nargout == 0
assignin('base','clusters_summary_stats',clusters)
end
end