-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathlimo_AIC_BIC.m
146 lines (123 loc) · 4.18 KB
/
limo_AIC_BIC.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
function [aic, bic] = limo_AIC_BIC(varargin)
% Akaike information criterion (aic) and Bayesian information criterion (bic)
% for a GLM computed by LIMO tools
%
% FORMATS: [aic, bic] = limo_AIC_BIC(LIMO) % default
% [aic, bic] = limo_AIC_BIC(LIMO,k)
% [aic, bic] = limo_AIC_BIC(key,value)
%
% INPUTS LIMO is the default LIMO.mat computed and updated after running limo_glm.m
% k is an additional value added to the penalty term - for instance
% is can be used to compare information resulting from the same
% model but different pre-processing pipelines
% key,values are pairs that can be used to call this function more
% flexibly, especially for low dimensional data
% 'Y', a data vector [n*1]
% 'X', the design matrix [n*p]
% 'Betas', the model parameters [p*1] (if omitted an OLS pinv(X)*Y is computed)
% 'family','gaussian' (default) or 'poisson', 'binomial' or 'none'
%
% Hector Lorenzo Mebenga & Cyril Pernet
% -------------------------------------
% Copyright (C) LIMO Team 2023
%% defaults
k = [];
family = 'gaussian';
%% check inputs
if nargin == 0
help limo_AIC_BIC
return
elseif nargin <= 2
LIMO = varargin{1};
if ischar(LIMO)
LIMO = load(LIMO);
LIMO = LIMO.LIMO;
end
% load the data
Yr = load(fullfile(LIMO.dir,'Yr.mat')); Yr = Yr.Yr; % [channels x frames x trials]
Betas = load(fullfile(LIMO.dir,'Betas.mat')); Betas = Betas.Betas; % [channels x frames x number of parameters]
if strcmpi(LIMO.Analysis,'Time-Frequency') %% add dim avoiding looking for LIMO
Yr = limo_tf_4d_reshape(Yr);
Betas = limo_tf_4d_reshape(Betas);
end
n = size(LIMO.design.X,1);
p = rank(LIMO.design.X);
if n ~= size(Yr,3)
error('the design matrix in LIMO and the data do not have the same number of trials')
end
X = LIMO.design.X;
if nargin == 2
k = varargin{2};
end
else
for v = 1:nargin
if any(strcmpi(varargin{v},{'Y','Yr'}))
Yr = varargin{v+1};
elseif any(strcmpi(varargin{v},{'B','Betas'}))
Betas = varargin{v+1};
elseif any(strcmpi(varargin{v},{'X','Design'}))
X = varargin{v+1};
n =size(X,1);
p =rank(X);
elseif strcmpi(varargin{v},'k')
k = varargin{v+1};
end
end
if ~exist('Yr','var')
error('some data must be passed along');
end
if ~exist('X','var')
error('The design matrix must be passed along');
end
if ~exist('Betas','var')
Betas = pinv(X)*Yr;
end
if n ~= size(Yr,1)
if n == size(Yr,2)
Yr = Yr';
else
error('the design matrix and the data do not have the same number of trials')
end
end
end
%% compute
% if low dim data, make them high dim
if size(Yr,2) == 1
Y = NaN(1,1,size(Yr,1));
Y(1,1,:) = Yr; Y(1,2,:) = Yr;
clear Yr; Yr = Y; clear Y;
end
if size(Betas,2) == 1
B = NaN(1,1,size(Betas,1));
B(1,1,:) = Betas; B(1,2,:) = Betas;
clear Betas; Betas = B; clear B;
end
% run the analysis channel wise
array = find(~isnan(Yr(:,1,1)));
for channel= 1:length(array)
residuals = squeeze(Yr(array(channel),:,:))' - X*squeeze(Betas(array(channel),:,:))';
sigma2=sum(residuals.^2)/n;
% compute likelihood
if strcmpi(family,'none')
ll =-(n/2)*log(2*pi*sigma2) - sum(residuals.^2)/(2*sigma2);
elseif strcmpi(family,'binomial')
ll = sum(log(binopdf(y, 1, exp(X*beta_hat)./(1+exp(X*beta_hat)))));
elseif strcmpi(family,'poisson')
ll = sum(log(poisspdf(squeeze(Yr(array(channel),:,:)), exp(X*beta_hat))));
elseif strcmpi(family,'gaussian')
ll = -(n/2)*log(2*pi*sigma2) - sum(residuals.^2)/(2*sigma2);
end
if ~isempty(k)
aic = -2*ll + 2*p+sqrt(k);
bic = -2*ll + p*log(n)+sqrt(k);
else
aic = -2.*ll + 2*p;
bic = -2.*ll + p*log(n);
end
end
if exist('LIMO','var')
if strcmpi(LIMO.Analysis,'Time-Frequency') %% add dim avoiding looking for LIMO
aic = limo_tf_4d_reshape(aic);
bic = limo_tf_4d_reshape(bic);
end
end