From 49dcc2a7488b3de5762a0a2a9c841a6eddb683f5 Mon Sep 17 00:00:00 2001 From: Yangjun Wang | CKAD | Web3 Learner Date: Sun, 14 Jul 2024 03:31:33 +0800 Subject: [PATCH] add stats for perennial (#58) * add stats for perennial * groupby timestamp for perennial stats to remove duplicate timestamp data records * filter by bucket daily and aggreated for all markets * convert dataframe column before group --- src/scripts/stats.py | 63 +++++++++++++++++++++++++++++++++++--------- 1 file changed, 50 insertions(+), 13 deletions(-) diff --git a/src/scripts/stats.py b/src/scripts/stats.py index ebbe75a..1292d3e 100644 --- a/src/scripts/stats.py +++ b/src/scripts/stats.py @@ -101,6 +101,33 @@ 'accessor': 'futuresTrades' } } + }, + 'perennial': { + 'subgraph_endpoint': 'https://subgraph.satsuma-prod.com/7ed49092fef1/equilibria/perennial-v2-arbitrum-new/api', + 'rpc_endpoint': f'https://arbitrum-mainnet.infura.io/v3/{INFURA_KEY}', + 'queries': { + 'aggregate_stats': { + 'query': gql(""" + query aggregateStats($last_id: Bytes!) { + marketAccumulations( + where: { + id_gt: $last_id, + bucket: daily, + }, + first: 1000 + ) { + id + timestamp + longNotional + shortNotional + trades + traders + } + } + """), + 'accessor': 'marketAccumulations' + }, + } } } @@ -148,22 +175,31 @@ async def main(config_key): df_agg = clean_df(df_agg, decimal_cols=['volume', 'feesSynthetix', 'feesKwenta'] if config_key == 'v2' else ['volume']).drop('id', axis=1).sort_values('timestamp') df_agg['timestamp'] = df_agg['timestamp'].astype(int) df_agg['trades'] = df_agg['trades'].astype(int) - df_agg['cumulativeTrades'] = df_agg['trades'].cumsum() - # Trader data query and processing - trader_query = config['queries']['traders'] - df_trader = pd.DataFrame(await run_recursive_query(trader_query['query'], {'last_id': ''}, trader_query['accessor'], config['subgraph_endpoint'])).drop('id', axis=1).sort_values('timestamp') - df_trader['dateTs'] = df_trader['timestamp'].apply(lambda x: int(int(x) / 86400) * 86400) - df_trader['cumulativeTraders'] = (~df_trader['accountId' if config_key == 'v3' else 'account'].duplicated()).cumsum() - df_trader_agg = df_trader.groupby('dateTs')['accountId' if config_key == 'v3' else 'account'].nunique().reset_index() - df_trader_agg.columns = ['timestamp', 'uniqueTraders'] - df_trader_agg['cumulativeTraders'] = df_trader.groupby('dateTs')['cumulativeTraders'].max().reset_index()['cumulativeTraders'] + if config_key == 'perennial': + df_agg['volume'] = df_agg['longNotional'].astype(float) / 1_000_000 + df_agg['shortNotional'].astype(float) / 1_000_000 + df_agg['uniqueTraders'] = df_agg['traders'].astype(int) + + df_agg = df_agg.groupby('timestamp').sum().reset_index() + df_agg['cumulativeTrades'] = df_agg['trades'].cumsum() + df_agg['cumulativeTraders'] = df_agg['uniqueTraders'].cumsum() + df_write = df_agg[['timestamp', 'volume', 'trades', 'cumulativeTrades', 'uniqueTraders', 'cumulativeTraders']] + else: + df_agg['cumulativeTrades'] = df_agg['trades'].cumsum() + # Trader data query and processing + trader_query = config['queries']['traders'] + df_trader = pd.DataFrame(await run_recursive_query(trader_query['query'], {'last_id': ''}, trader_query['accessor'], config['subgraph_endpoint'])).drop('id', axis=1).sort_values('timestamp') + df_trader['dateTs'] = df_trader['timestamp'].apply(lambda x: int(int(x) / 86400) * 86400) + df_trader['cumulativeTraders'] = (~df_trader['accountId' if config_key == 'v3' else 'account'].duplicated()).cumsum() + df_trader_agg = df_trader.groupby('dateTs')['accountId' if config_key == 'v3' else 'account'].nunique().reset_index() + df_trader_agg.columns = ['timestamp', 'uniqueTraders'] + df_trader_agg['cumulativeTraders'] = df_trader.groupby('dateTs')['cumulativeTraders'].max().reset_index()['cumulativeTraders'] - print(f'trader result size: {df_trader.shape[0]}') - print(f'trader agg result size: {df_trader_agg.shape[0]}') + print(f'trader result size: {df_trader.shape[0]}') + print(f'trader agg result size: {df_trader_agg.shape[0]}') - # Combine the two datasets - df_write = df_agg.merge(df_trader_agg, on='timestamp') + # Combine the two datasets + df_write = df_agg.merge(df_trader_agg, on='timestamp') # Ensure directory exists outdir = f'data/stats' @@ -179,3 +215,4 @@ async def main(config_key): if __name__ == '__main__': asyncio.run(main('v3')) asyncio.run(main('v2')) + asyncio.run(main('perennial'))