-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathIDEA_Mesh_1_chpt.py
147 lines (136 loc) · 4.86 KB
/
IDEA_Mesh_1_chpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch
from utils import *
import scipy.sparse
import random
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
setup_seed(0)
# ====================
data_name = 'Mesh-1'
num_nodes = 38 # Number of nodes
num_snaps = 445 # Number of snapshots
max_thres = 2000 # Threshold for maximum edge weight
noise_dim = 32 # Dimensionality of noise input
feat_dim = 32 # Dimensionality of node feature
pos_dim = 16 # Dimensionality of position embedding
# ====================
edge_seq = np.load('data/%s_edge_seq.npy' % (data_name), allow_pickle=True)
mod_seq = np.load('data/%s_mod_seq.npy' % (data_name), allow_pickle=True)
# ==========
# Get node features
feat = np.load('data/%s_feat.npy' % (data_name), allow_pickle=True)
feat_tnr = torch.FloatTensor(feat).to(device)
# Get positional embedding
pos_emb = None
for p in range(num_nodes):
if p==0:
pos_emb = get_pos_emb(p, pos_dim)
else:
pos_emb = np.concatenate((pos_emb, get_pos_emb(p, pos_dim)), axis=0)
pos_tnr = torch.FloatTensor(pos_emb).to(device)
feat_tnr = torch.cat((feat_tnr, pos_tnr), dim=1)
# ====================
win_size = 10 # Window size of historical snapshots
lambd = 0.1 # Hyper-parameter of attentive aligning unit
epsilon = 0.01 # Threshold of the zero-refining
num_test_snaps = 50 # Number of test snapshots
num_val_snaps = 10 # Number of validation snapshots
num_train_snaps = num_snaps-num_test_snaps-num_val_snaps # Number of training snapshots
# ====================
# Get align matrices
align_mat = torch.eye(num_nodes).to(device)
align_list = []
for i in range(win_size):
align_list.append(align_mat)
# ==========
feat_list = []
for i in range(win_size+1):
feat_list.append(feat_tnr)
# ==========
num_nodes_list = []
for i in range(win_size+1):
num_nodes_list.append(num_nodes)
# ====================
# Load check point
gen_net = torch.load('chpt/IDEA_%s.pkl' % (data_name)).to(device)
# ====================
# Evaluate the model on the test set
gen_net.eval()
# ==========
RMSE_list = []
MAE_list = []
MLSD_list = []
MR_list = []
for tau in range(num_snaps-num_test_snaps, num_snaps):
# ====================
sup_list = [] # List of GNN support (tensor)
noise_list = [] # List of random noise inputs
for t in range(tau-win_size, tau):
# ==========
edges = edge_seq[t]
adj = get_adj_wei(edges, num_nodes, max_thres)
adj_norm = adj/max_thres # Normalize the edge weights to [0, 1]
# ==========
# Transfer the GNN support to a sparse tensor
sup = get_gnn_sup(adj_norm)
sup_sp = sp.sparse.coo_matrix(sup)
sup_sp = sparse_to_tuple(sup_sp)
idxs = torch.LongTensor(sup_sp[0].astype(float)).to(device)
vals = torch.FloatTensor(sup_sp[1]).to(device)
sup_tnr = torch.sparse.FloatTensor(idxs.t(), vals, sup_sp[2]).float().to(device)
sup_list.append(sup_tnr)
# =========
# Generate the random noise via random projection
mod_tnr = torch.FloatTensor(mod_seq[t]).to(device)
rand_mat = rand_proj(num_nodes, noise_dim)
rand_tnr = torch.FloatTensor(rand_mat).to(device)
noise_tnr = torch.mm(mod_tnr, rand_tnr)
noise_list.append(noise_tnr)
# ==========
# Get prediction result
adj_est_list = gen_net(sup_list, feat_list, noise_list, align_list, num_nodes_list, lambd, pred_flag=True)
adj_est = adj_est_list[-1]
if torch.cuda.is_available():
adj_est = adj_est.cpu().data.numpy()
else:
adj_est = adj_est.data.numpy()
adj_est *= max_thres # Rescale the edge weights to the original value range
# ==========
# Refine the prediction result
for r in range(num_nodes):
adj_est[r, r] = 0
for r in range(num_nodes):
for c in range(num_nodes):
if adj_est[r, c] <= epsilon:
adj_est[r, c] = 0
# ====================
# Get ground-truth
edges = edge_seq[tau]
gnd = get_adj_wei(edges, num_nodes, max_thres)
# ====================
# Evaluate the prediction result
RMSE = get_RMSE(adj_est, gnd, num_nodes)
MAE = get_MAE(adj_est, gnd, num_nodes)
MLSD = get_MLSD(adj_est, gnd, num_nodes)
MR = get_MR(adj_est, gnd, num_nodes)
# ==========
RMSE_list.append(RMSE)
MAE_list.append(MAE)
MLSD_list.append(MLSD)
MR_list.append(MR)
# ====================
RMSE_mean = np.mean(RMSE_list)
RMSE_std = np.std(RMSE_list, ddof=1)
MAE_mean = np.mean(MAE_list)
MAE_std = np.std(MAE_list, ddof=1)
MLSD_mean = np.mean(MLSD_list)
MLSD_std = np.std(MLSD_list, ddof=1)
MR_mean = np.mean(MR_list)
MR_std = np.std(MR_list, ddof=1)
print('Test RMSE %f %f MAE %f %f MLSD %f %f MR %f %f\n'
% (RMSE_mean, RMSE_std, MAE_mean, MAE_std, MLSD_mean, MLSD_std, MR_mean, MR_std))