-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
120 lines (100 loc) · 6.03 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
import time
import random
import numpy as np
from tqdm import tqdm
import tensorflow as tf
import utils
import os
import time
import random
import numpy as np
from tqdm import tqdm
import tensorflow as tf
from layers import conv2d, linear
__version__ = 0.1
class BaseModel(object):
"""A Base Class for any model to be constructed"""
def __init__(self):
pass
def build_model(self, num_outputs, shape):
self.behaviour_weights = {}
self.target_weights = {}
initializer = tf.truncated_normal_initializer(0, 0.02)
activation_fn = tf.nn.relu
with tf.variable_scope('behaviour'):
self.b_x = tf.placeholder(tf.uint8, shape=[None] + shape, name="states")
self.b_x = tf.to_float(self.b_x) / 255.0
self.b_conv1, self.behaviour_weights['conv1_w'], self.behaviour_weights['conv1_b'] = conv2d(self.b_x, 32, [8, 8], [4, 4], initializer, activation_fn,
name='b_conv1')
self.b_conv2, self.behaviour_weights['conv2_w'], self.behaviour_weights['conv2_b'] = conv2d(self.b_conv1, 64, [4, 4], [2, 2], initializer, activation_fn,
name='b_conv2')
self.b_conv3, self.behaviour_weights['conv3_w'], self.behaviour_weights['conv3_b'] = conv2d(self.b_conv2, 64, [3, 3], [1, 1], initializer, activation_fn,
name='b_conv3')
self.b_conv3_flat = tf.contrib.layers.flatten(self.b_conv3)
self.b_fc1, self.behaviour_weights['fc1_w'], self.behaviour_weights['fc1_b'] = linear(self.b_conv3_flat, 512, activation_fn=activation_fn, name='b_fc1')
self.b_out, self.behaviour_weights['out_w'], self.behaviour_weights['out_b'] = linear(self.b_fc1, num_outputs, name='b_out')
with tf.variable_scope('target'):
self.t_x = tf.placeholder(tf.uint8, shape=[None] + shape, name="states")
self.t_x = tf.to_float(self.t_x) / 255.0
self.t_conv1, self.target_weights['conv1_w'], self.target_weights['conv1_b'] = conv2d(self.t_x, 32, [8, 8], [4, 4], initializer, activation_fn,
name='t_conv1')
self.t_conv2, self.target_weights['conv2_w'], self.target_weights['conv2_b'] = conv2d(self.t_conv1, 64, [4, 4], [2, 2], initializer, activation_fn,
name='t_conv2')
self.t_conv3, self.target_weights['conv3_w'], self.target_weights['conv3_b'] = conv2d(self.t_conv2, 64, [3, 3], [1, 1], initializer, activation_fn,
name='t_conv3')
self.t_conv3_flat = tf.contrib.layers.flatten(self.t_conv3)
self.t_fc1, self.target_weights['fc1_w'], self.target_weights['fc1_b'] = linear(self.t_conv3_flat, 512, activation_fn=activation_fn, name='t_fc1')
self.t_out, self.target_weights['out_w'], self.target_weights['out_b'] = linear(self.t_fc1, num_outputs, name='t_out')
with tf.variable_scope('copy'):
self.copy_from = {}
self.copy_to = {}
for name in self.behaviour_weights.keys():
self.copy_from[name] = tf.placeholder('float32', self.target_weights[name].get_shape().as_list(), name=name)
self.copy_to[name] = self.target_weights[name].assign(self.copy_from[name])
def predict(self, state, type):
raise NotImplemented()
def update(self, s, a, y):
raise NotImplemented()
class DQN(BaseModel):
""" Our Estimator Network """
def __init__(self, sess, config, num_actions):
BaseModel.__init__(self)
self.name = config.name
self.sess = sess
self.config = config
self.num_actions = num_actions
self.shape = config.state_shape
self.learning_rate = config.learning_rate
self.build_model(num_outputs=self.num_actions, shape=self.shape)
with tf.variable_scope("DQN"):
# placeholders
with tf.name_scope('lose'):
self.actions = tf.placeholder(tf.int32, shape=[None], name='actions')
self.targets = tf.placeholder(tf.float32, [None], name='targets')
self.weights = tf.placeholder(tf.float32, [None], name='weights')
gather_indices = tf.range(config.batch_size) * tf.shape(self.b_out)[1] + self.actions
self.action_predictions = tf.gather(tf.reshape(self.b_out, [-1]), gather_indices)
# loss
if config.prm:
self.losses = tf.mul(tf.squared_difference(self.targets, self.action_predictions), self.weights)
else:
self.losses = tf.squared_difference(self.targets, self.action_predictions)
self.loss = tf.reduce_mean(self.losses)
self.optimizer = tf.train.RMSPropOptimizer(self.learning_rate, 0.99, 0.0, 1e-6)
self.update_step = self.optimizer.minimize(self.loss)
def update_target_network(self):
for name in self.behaviour_weights.keys():
self.sess.run(self.copy_to[name], {self.copy_from[name]: self.behaviour_weights[name].eval(self.sess)})
def predict(self, states, type="behaviour"):
if type == "behaviour":
return self.sess.run(self.b_out, {self.b_x: states})
elif type == "target":
return self.sess.run(self.t_out, {self.t_x: states})
def update(self, s, a, y, weights=None):
if self.config.prm:
feed_dict = {self.b_x: s, self.targets: y, self.actions: a, self.weights: weights}
else:
feed_dict = {self.b_x: s, self.targets: y, self.actions: a}
_, loss = self.sess.run([self.update_step, self.loss], feed_dict)
return loss