-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
234 lines (203 loc) · 10.9 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import argparse
import os
import sys
sys.path.append("..")
import torch
# Check if CUDA is available and set GPU environment variable accordingly
if torch.cuda.is_available():
device = torch.device("cuda")
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3,4,5,6,7,8" # You can modify this to select the appropriate GPU
else:
device = torch.device("cpu")
print("CUDA is not available. Using CPU.")
from exp.exp_imputation import Exp_Imputation
from exp.exp_trad import Exp_Trad
import random
import numpy as np
fix_seed = 2021
random.seed(fix_seed)
torch.manual_seed(fix_seed)
np.random.seed(fix_seed)
parser = argparse.ArgumentParser(description='TimesNet')
# basic config
parser.add_argument('--task_name', type=str, required=True, default='long_term_forecast',
help='task name, options:[long_term_forecast, short_term_forecast, imputation, classification, anomaly_detection]')
parser.add_argument('--is_training', type=int, required=True, default=1, help='status')
parser.add_argument('--model_id', type=str, required=True, default='test', help='model id')
parser.add_argument('--model', type=str, required=True, default='Autoformer',
help='model name, options: [Autoformer, Transformer, TimesNet]')
# data loader
parser.add_argument('--data', type=str, required=True, default='ETTm1', help='dataset type')
parser.add_argument('--root_path', type=str, default='./data/ETT/', help='root path of the data file')
parser.add_argument('--log_dir', type=str, default='./logs/', help='logs directory')
parser.add_argument('--data_path', type=str, default='all1_down1.csv', help='data file')
parser.add_argument('--log_name', type=str, default='result_imputation.txt', help='log file name')
parser.add_argument('--features', type=str, default='M',
help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate')
parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
parser.add_argument('--freq', type=str, default='h',
help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')
parser.add_argument('--source_names', type=str, default='cha,par,sst', help='the name of the sources')
parser.add_argument('--lat', type=int, default=24, help='latitude')
parser.add_argument('--lon', type=int, default=24, help='longitude')
# forecasting task
parser.add_argument('--seq_len', type=int, default=96, help='input sequence length')
parser.add_argument('--label_len', type=int, default=48, help='start token length')
parser.add_argument('--pred_len', type=int, default=96, help='prediction sequence length')
parser.add_argument('--seasonal_patterns', type=str, default='Monthly', help='subset for M4')
# inputation task
parser.add_argument('--mask_rate', type=float, default=0.25, help='mask ratio')
# anomaly detection task
parser.add_argument('--anomaly_ratio', type=float, default=0.25, help='prior anomaly ratio (%)')
# model define
parser.add_argument('--top_k', type=int, default=5, help='for TimesBlock')
parser.add_argument('--num_kernels', type=int, default=6, help='for Inception')
parser.add_argument('--enc_in', type=int, default=7, help='encoder input size')
parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
parser.add_argument('--c_out', type=int, default=7, help='output size')
parser.add_argument('--d_model', type=int, default=512, help='dimension of model')
parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn')
parser.add_argument('--len_dff', type=int, default=256, help='dimension of L hidden state ')
parser.add_argument('--moving_avg', type=int, default=25, help='window size of moving average')
parser.add_argument('--factor', type=int, default=1, help='attn factor')
parser.add_argument('--distil', action='store_false',
help='whether to use distilling in encoder, using this argument means not using distilling',
default=True)
parser.add_argument('--dropout', type=float, default=0.1, help='dropout')
parser.add_argument('--embed', type=str, default='timeF',
help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--activation', type=str, default='gelu', help='activation')
parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder')
# optimization
parser.add_argument('--num_workers', type=int, default=10, help='data loader num workers')
parser.add_argument('--itr', type=int, default=1, help='experiments times')
parser.add_argument('--train_epochs', type=int, default=100, help='train epochs')
parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data')
parser.add_argument('--patience', type=int, default=3, help='early stopping patience')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
parser.add_argument('--des', type=str, default='test', help='exp description')
parser.add_argument('--loss', type=str, default='MAE', help='loss function')
parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate')
parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)
# GPU
parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
parser.add_argument('--gpu', type=int, default=0, help='gpu')
parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default= False)
parser.add_argument('--devices', type=str, default='0,1,2', help='device ids of multile gpus')
# de-stationary projector params
parser.add_argument('--p_hidden_dims', type=int, nargs='+', default=[128, 128],
help='hidden layer dimensions of projector (List)')
parser.add_argument('--p_hidden_layers', type=int, default=2, help='number of hidden layers in projector')
# patching
parser.add_argument('--patch_size', type=int, default=1)
parser.add_argument('--stride', type=int, default=1)
parser.add_argument('--gpt_layers', type=int, default=6)
parser.add_argument('--ln', type=int, default=0)
parser.add_argument('--mlp', type=int, default=0)
parser.add_argument('--weight', type=float, default=0)
parser.add_argument('--percent', type=int, default=100)
# pretrain
parser.add_argument('--pretrain_postfix', type=str, default='checkpoint.pth', help='pretrain model path')
# fusion layers
parser.add_argument('--last_fusion', type=str, default='V_DAB', help='last fusion layers setting')
# TTTITS
parser.add_argument('--param_sharing_strategy', type=str, default='inner_group', help='parameter sharing strategy for TTTITS')
parser.add_argument('--d_lower', type=int, default=96, help='dimension of lower-level model')
parser.add_argument('--ttt_style', type=str, default='TTTLinear', help='style of TTT')
# For invert Embed
parser.add_argument('--is_invert', type=int, default=0, help='whether to invert embedding')
# For Expert Model
parser.add_argument('--expert_models', type=str, default='CCSS', help='expert model, you can use W, V, A, G, M, S, H, C, D or their combination')
# For DINEOF model
parser.add_argument('--rank', type=int, default=5, help='rank of SVD in DINEOF')
parser.add_argument('--tol', type=float, default=1e-8, help='tolerance in DINEOF')
parser.add_argument('--nitemax', type=int, default=300, help='maximum number of iterations in DINEOF')
parser.add_argument('--to_center', type=bool, default=True, help='whether to center the tensor before SVD')
parser.add_argument('--keep_non_negative_only', type=bool, default=True, help='whether to keep non-negative values only')
args = parser.parse_args()
args.use_gpu = True if torch.cuda.is_available() and args.use_gpu else False
if args.use_gpu and args.use_multi_gpu:
args.dvices = args.devices.replace(' ', '')
device_ids = args.devices.split(',')
args.device_ids = [int(id_) for id_ in device_ids]
args.gpu = args.device_ids[0]
args.source_names = args.source_names.split(',')
args.expert_ids = list(args.expert_models)
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
print('Args in experiment:')
print(args)
if args.task_name == 'imputation':
if args.model_id == 'DINEOF':
Exp = Exp_Trad
else:
Exp = Exp_Imputation
if args.is_training and args.model != 'DINEOF':
for ii in range(args.itr):
# setting record of experiments
setting = '{}_{}_{}_{}_ft{}_te{}_bs{}_gl{}_dm{}_nh{}_el{}_lr{}_enci{}_df{}_fc{}_eb{}_dt{}_{}_{}'.format(
args.task_name,
args.model_id,
args.model,
args.data,
args.features,
args.train_epochs,
args.batch_size,
args.gpt_layers,
args.d_model,
args.n_heads,
args.e_layers,
args.learning_rate,
args.enc_in,
args.d_ff,
args.factor,
args.embed,
args.distil,
args.des, ii)
exp = Exp(args) # set experiments
print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
exp.train(setting)
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.test(setting)
torch.cuda.empty_cache()
elif args.model != 'DINEOF':
ii = 0
setting = '{}_{}_{}_{}_ft{}_te{}_bs{}_gl{}_dm{}_nh{}_el{}_lr{}_enci{}_df{}_fc{}_eb{}_dt{}_{}_{}'.format(
args.task_name,
args.model_id,
args.model,
args.data,
args.features,
args.train_epochs,
args.batch_size,
args.gpt_layers,
args.d_model,
args.n_heads,
args.e_layers,
args.learning_rate,
args.enc_in,
args.d_ff,
args.factor,
args.embed,
args.distil,
args.des, ii)
exp = Exp(args) # set experiments
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.test(setting, test=1)
exp.gen(setting)
torch.cuda.empty_cache()
else:
for ii in range(args.itr):
setting = '{}_{}_{}_{}_Rank{}_Exp_{}'.format(
args.task_name,
args.model_id,
args.model,
args.data,
args.rank, ii)
exp = Exp(args)
print('>>>>>>>start evaluating : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
exp.evaluate(setting)