forked from viczommers/CentralBank-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
705 lines (670 loc) · 35 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
from dash import Dash, dcc, html, Input, Output, callback, State, dash_table, no_update, callback_context
from dash.exceptions import PreventUpdate
import dash_bootstrap_components as dbc
import requests
import threading
import queue
import os
import shutil
from datetime import datetime, timedelta
import plotly.graph_objects as go
import json
import openai
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import DirectoryLoader
from langchain.document_loaders import PyPDFLoader
# TODO: 'chroma.sqlite3' cant be deleted while vectordb is not set to None
# Setting vectordb to None will require creating new Chroma() instance to query/access db again that will tax embedding model
os.environ["OPENAI_API_KEY"] = ""
thread = None
pdf_dates = {}
current_date = datetime.now()
# NOTE: plot_gpt() can return pandas df from json response, you can use df for datatable output
fig = go.Figure()
persist_directory = 'db'
output_directory = "downloaded_pdfs"
os.makedirs(output_directory, exist_ok=True)
# HACK: Mutable dict flag to store data, instead of global var
vectordb_dict = {'vectordb': None}
docs_dict = {'docs_list': None}
plot_dict = {'title': None,'query': None}
# HACK: Queue to communicate between the downloads thread and Dash app
progress_queue = queue.Queue()
# HACK: flag to control the threads execution
stop_thread_flag = threading.Event()
database_flag = threading.Event()
seconddb_flag = threading.Event()
# Initialize the Dash app
app = Dash(__name__, external_stylesheets=[dbc.themes.FLATLY, dbc.icons.BOOTSTRAP])
server = app.server
password_input = dbc.Input(
id='password-input',
type='password',
placeholder=['Enter your key...'],
value=None
)
button_group = html.Div(
[
dbc.Row([
dbc.RadioItems(
id="radios",
className="btn-group mt-3",
inputClassName="btn-check",
labelClassName="btn btn-outline-primary",
labelCheckedClassName="active",
options=[
{"label": "CPI Inflation", "value": "CPI"},
{"label": "Interest Rates", "value": "Rates"},
{"label": "GDP Growth", "value": "GDP"},
{"label": "Consumer Spending", "value": "Consumption"},
{"label": "Household Savings", "value": "Savings"},
{"label": "Unemployment Rate", "value": "Unemployment"},
{"label": "Oil Prices", "value": "Oil"}
], value="")
]),
html.Div(id="output"),
dbc.Card(
dbc.Row([
dbc.InputGroup([
dbc.Textarea(id='prompt-input',placeholder="Type something..."),
dbc.Button(children=["Submit Prompt ", html.I(className="bi bi-send", style=dict(display='inline-block',fontSize='1rem'))], id='submit-button', n_clicks=0)
]),
html.Div(id="output-prompt")
]), body=True, className="shadow-sm p-3 mt-3 bg-light rounded"
)
],
className="radio-group",
id="button-group"
)
collapse = html.Div(
[
html.Br(),
dbc.Button(
children=[html.I(className="bi bi-graph-up-arrow", style=dict(display='inline-block')),' Generate a Plot'],
id="collapse-button",
outline=False,
size="lg",
className="mb-3",
color="primary",
n_clicks=0,
),
dbc.Collapse(
dbc.Card(dcc.Graph(figure=fig,id='plot-device')),
id="collapse",
is_open=False,
)
]
)
def dummy_download_and_progress():
return html.Div([
html.Div(id='dummy-output', style=dict(display='none')),
dcc.Interval(id='interval-component', interval=500, n_intervals=0, disabled=False),
dbc.Button(children=["1. Press to Download Latest Reports ", html.I(className="bi bi-file-earmark-text", style=dict(display='inline-block'))],
id="download-button", color="info", className='mr-3 mt-3 mb-3',n_clicks=0, outline=True),
dbc.Button(children=["2. Press to Process Reports into a Database ", html.I(className="bi bi-database-add", style=dict(display='inline-block'))],
id="chunking-button", color="info", className='mr-3 mt-3 mb-3 d-none',n_clicks=0, outline=True),
dbc.Progress(id="progress-bar", value=0, label="",style=dict(height='20px'),className='d-none'),
dash_table.DataTable(
id='pdf-dates-table',
columns=[{"name": i, "id": i} for i in ['File Path', 'Author', 'Date']],
data=[], style_table={'display': 'none', 'margin-bottom': '3px'}
),
html.Div([
html.I(className="bi bi-book", style=dict(display='inline-block',fontSize='2rem')),
html.H3('Select a Topic', className='mr-3 mt-0 mb-0', style={'fontWeight': 'bold','display':'inline-block','margin-left':'10px'})
]),
button_group,
collapse,
dbc.Row([
dbc.Col([
html.Footer([
html.P("Developed by Victor Zommers | ",
style={'display': 'inline-block','font-size': '16px'}),
html.A("Check out other dashboards", href="https://sites.google.com/view/victor-zommers/",
style={'display': 'inline-block', 'margin-left': '5px','font-size': '16px'},target="_blank"),
html.Span(" | ", style={'display': 'inline-block','font-size': '16px', 'margin-left': '5px'}),
html.A("Get in touch", href="mailto:[email protected]?subject=[GitHub]%20LLM%20Dashboard",
style={'display': 'inline-block', 'margin-left': '5px','font-size': '16px'},target="_blank")
], style={'text-align': 'left', 'margin-top': '10px'})
], width=12)
])
])
def validate_password(password):
if password is None:
return dbc.Alert("No Key yet", color='light')
elif not str(password).startswith("sk-") or len(password) <7:
return dbc.Alert("hmm... Key is invalid", color='secondary')
os.environ["OPENAI_API_KEY"] = str(password)
#'*'*(len(password)-6 #alternative
return dbc.Alert('Your key: '+password[:3] + ' .'*3 + password[-4:],color='success')
app.title = 'Central Bank Speak'
app.layout = dbc.Container([
dbc.Row([
dbc.Col(html.Img(src='assets/logo.png', style={'width':'100%', 'margin-top': '10px'}),width=3),
dbc.Col([
html.Div([
html.I(className="bi bi-bank", style=dict(display='inline-block',fontSize='5rem')),
html.H2('Central Bank Speak (RAG-LLM)', style={'fontWeight': 'bold','display':'inline-block','margin-left':'10px'}),
]),
html.P('Summarise or Plot latest Macroeconomic projections and Inflation forecasts from Central Bank publications using ChatGPT & Langchain.'),
html.Div([
html.I(className="bi bi-question-square", style=dict(display='inline-block',fontSize='2rem')),
html.H3('How to use:', style={'fontWeight': 'bold','display':'inline-block','margin-left':'10px'})
]),
html.Ol([
html.Li('Paste your unique OpenAI API key below'),
html.Li('Select a currency/country tab'),
html.Li('Download latest reports, Process them into a Database'),
html.Li('Select a topic to query'),
html.Li('Submit a prompt to ChatGPT or Generate a plot')
], style={'list-style-type': 'upper-roman', 'list-style-position': 'inside', 'text-align': 'left', 'padding-left': '0'})
],width=9)
]),
dbc.Row([
html.Hr(),
dbc.Row([
dbc.Col(dbc.InputGroup([
dbc.InputGroupText([html.I(className="bi bi-key", style=dict(fontSize='2rem', display='inline-block')),
html.H5(['OpenAI API Key',html.Span('*', style={'color': 'red','fontWeight': 'bold'})], style={'display':'inline-block','margin-left':'10px'})
], style={'display': 'flex', 'justify-content': 'center', 'align-items': 'center'}),
password_input
]), width=8),
dbc.Col([html.Div(id='password-output')],width=4)
]),
html.P(['Please add your OpenAI API key. It will be used to generate your summary and visualisations from downloaded reports and your custom prompt. You can set-up your key ',
html.A([html.Span('HERE', style={'textDecoration': 'underline'}), html.Span(' '),
html.I(className="bi bi-box-arrow-up-right", style=dict(display='inline-block',fontSize='1rem'))],
href='https://platform.openai.com/account/api-keys', target='_blank',style={'fontWeight': 'bold', 'textDecoration': 'none'})
],className='text-primary'),
html.Hr()
]),
dcc.Tabs(id="tabs", value='tab-2', children=[
dcc.Tab(label='US Dollar $', value='tab-1', selected_className='fw-bold', selected_style={'background-color': 'green', 'color': 'white','border-top':'1px darkgrey solid','opacity':'0.75'}),
dcc.Tab(label='Pound Stirling £', value='tab-2', selected_className='fw-bold', selected_style={'background-color': 'red', 'color': 'white','border-top':'1px darkgrey solid','opacity':'0.75'}),
dcc.Tab(label='Euro Area €', value='tab-3', selected_className='fw-bold', selected_style={'background-color': 'darkblue', 'color': 'white','border-top':'1px darkgrey solid','opacity':'0.50'})
]),
html.Div(id='tabs-content'),
], fluid=False)
def boe_download():
download_progress = 0
pdf_dates.clear()
os.makedirs(output_directory, exist_ok=True)
base_url = "https://www.bankofengland.co.uk/-/media/boe/files/monetary-policy-report/"
for i in range(12):
if stop_thread_flag.is_set():
print("Stopping as requested")
download_progress = 0
progress_queue.put(download_progress)
return
# Calculate the date for the current iteration
past_date = current_date - timedelta(days=i * 30) # Assuming 30 days per month for simplicity
# Format the date components (month and year)
month_str = past_date.strftime("%B").lower()
year_str = str(past_date.year)
# Construct the URL
pdf_url = f"{base_url}{year_str}/{month_str}/monetary-policy-report-{month_str}-{year_str}.pdf"
# Define the local file path
month_year = pdf_url.split("/")[-2:]
local_file_path = os.path.join(output_directory, f"monetary-policy-report-{month_year[0]}-{month_year[1]}.pdf")
# Download and save the PDF file locally
response = requests.get(pdf_url)
if response.status_code == 200:
with open(local_file_path, "wb") as pdf_file:
pdf_file.write(response.content)
print(f"Downloaded: {pdf_url}")
pdf_dates[local_file_path] = {
'date': datetime(year=past_date.year, month=past_date.month, day=1).strftime('%Y-%m-%dT%H:%M:%S%z'),
'author': 'Bank of England'}
download_progress += 8.33
progress_queue.put(download_progress)
def fed_download():
download_progress = 0
pdf_dates.clear()
os.makedirs(output_directory, exist_ok=True)
base_url = "https://www.federalreserve.gov/monetarypolicy/files/"
# Loop through all dates in the past 360 days
for k in range(365):
if stop_thread_flag.is_set():
print("Stopping as requested")
download_progress = 0
progress_queue.put(download_progress)
return
# Calculate the date for the current iteration
target_date = current_date - timedelta(days=k)
# Format the date components (year, month, and day)
year_str = target_date.strftime("%Y")
month_str = target_date.strftime("%m")
day_str = target_date.strftime("%d")
# Construct the URL for the Fed release
pdf_url = f"{base_url}fomcminutes{year_str}{month_str}{day_str}.pdf"
# Define the local file path
local_file_path = os.path.join(output_directory, f"fomcminutes{year_str}{month_str}{day_str}.pdf")
# Download the PDF file
response = requests.get(pdf_url)
if response.status_code == 200:
with open(local_file_path, "wb") as pdf_file:
pdf_file.write(response.content)
pdf_url2 = f"{base_url}monetary{year_str}{month_str}{day_str}a1.pdf"
local_file_path2 = os.path.join(output_directory, f"monetary{year_str}{month_str}{day_str}a1.pdf")
with open(local_file_path2, "wb") as pdf_file2:
pdf_file2.write(requests.get(pdf_url2).content)
print(f"Downloaded: {pdf_url}")
print(f"Downloaded: {pdf_url2}")
pdf_dates[local_file_path] = {
'date': datetime(year=target_date.year, month=target_date.month, day=1).strftime('%Y-%m-%dT%H:%M:%S%z'),
'author': 'FOMC Minutes'}
pdf_dates[local_file_path2] = {
'date': datetime(year=target_date.year, month=target_date.month, day=1).strftime('%Y-%m-%dT%H:%M:%S%z'),
'author': 'FOMC Statement'}
download_progress = k/3.65
progress_queue.put(download_progress)
def ecb_download():
download_progress = 0
pdf_dates.clear()
os.makedirs(output_directory, exist_ok=True)
# Define the base URL pattern
base_url = "https://www.ecb.europa.eu/pub/pdf/ecbu/"
# Calculate the release dates for the latest 8 releases
release_dates = []
for j in range(8):
release_date = current_date - timedelta(days=j * 365 // 8)
release_dates.append(release_date)
# Iterate over the release dates and generate URLs
for release_date in release_dates:
if stop_thread_flag.is_set():
print("Stopping as requested")
download_progress = 0
progress_queue.put(download_progress)
return
year_str = str(release_date.year)
# Calculate the release name based on the day of the year
day_of_year = release_date.timetuple().tm_yday
if day_of_year > 335 or day_of_year <30: release_name = 8
else: release_name = ((day_of_year - 1) // 45) + 1
release_name_str = f"{release_name:02d}"
pdf_url = f"{base_url}eb{year_str}{release_name_str}.en.pdf"
# Define the local file path
local_file_path = os.path.join(output_directory, f"eb{year_str}{release_name_str}.en.pdf")
# Download and save the PDF file locally
response = requests.get(pdf_url)
if response.status_code == 200:
with open(local_file_path, "wb") as pdf_file:
pdf_file.write(response.content)
print(f"Downloaded: {pdf_url}")
pdf_dates[local_file_path] = {
'date': datetime(year=release_date.year, month=release_date.month, day=1).strftime('%Y-%m-%dT%H:%M:%S%z'),
'author': 'European Central Bank'}
download_progress += 12.5
progress_queue.put(download_progress)
def pipe_langchain(folder):
database_flag.set()
loader = DirectoryLoader(output_directory, glob="./*.pdf", loader_cls=PyPDFLoader)
documents = loader.load()
for doc in documents:
if doc.metadata['source'] in pdf_dates:
doc.metadata['date'] = pdf_dates[doc.metadata['source']]['date']
doc.metadata['author'] = pdf_dates[doc.metadata['source']]['author']
# splitting the text into chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
texts = text_splitter.split_documents(documents)
embedding = OpenAIEmbeddings()
# Supplying a persist_directory will store the embeddings on disk
vectordb_dict['vectordb'] = Chroma.from_documents(documents=texts,
embedding=embedding,
persist_directory=folder)
# persist the db to disk
vectordb_dict['vectordb'].persist()
#vectordb_dict['vectordb'] = None
#vectordb_dict['vectordb'] = Chroma(persist_directory=folder,
# embedding_function=embedding)
# HACK: we set flag when vectordb was persisted for interval input to listen
database_flag.clear()
seconddb_flag.set()
print("Done with vectorising")
def plot_gpt(plot_prompt, plot_title):
if docs_dict['docs_list'] is not None and seconddb_flag.is_set():
openai.api_key = os.environ.get("OPENAI_API_KEY")
chunk1 = docs_dict['docs_list'][0]
chunk2 = docs_dict['docs_list'][1]
chunk3 = docs_dict['docs_list'][2]
chunk4 = docs_dict['docs_list'][3]
chunk5 = docs_dict['docs_list'][4]
system_prompt = f"""
You are expert macroeconomic analyst. Your purpose is to find numeric information like trends, forecasts, predictions, estimates from central banks publication supplied and return it in a json format only!
json should always have 2 keys: Date in strictly YYYY-MM-DD format, Value in numeric float. here is an example of acceptable json output (you can have as many rows as you want):
{{
"2023-01-01": 123.45,
"2023-02-01": 234.56,
"2023-03-01": 345.67
}}
Below are paragraphs delimited by ---.
---
{chunk1}
---
{chunk2}
---
{chunk3}
---
{chunk4}
---
{chunk5}
---
Each paragraph has its own publication date, if facts conflict, use paragraphs with latest publication date. Please answer the following user question (strictly) based on the facts above, you can do it!:
"""
context = [{"role": "system", "content": system_prompt},{"role": "user", "content": plot_prompt}]
# Send a message and receive a response
response = openai.ChatCompletion.create(
model="gpt-4-1106-preview",
messages=context
)
# Extract and print the assistant's reply
assistant_reply = response.choices[0].message['content']
start = assistant_reply.find("{")
end = assistant_reply.find("}") + 1
json_data = assistant_reply[start:end]
# Parse the JSON data into a Python dictionary
data_dict = json.loads(json_data)
# NOTE Pandas method if needed
#df_plot = pd.DataFrame(list(data_dict.items()), columns=['Date', 'Value'])
#fig = go.Figure(data=go.Scatter(x=df_plot['Date'], y=df_plot['Value'], mode='lines+markers', marker=dict(size=8), name='Scatter Plot'))
#fig.update_layout(title=f"Time-Series Plot of {str(plot_title)}", xaxis_title='Date', yaxis_title=str(plot_title), template="simple_white")
x_values = list(data_dict.keys())
y_values = list(data_dict.values())
fig = go.Figure(data=go.Scatter(x=x_values, y=y_values, mode='lines+markers', marker=dict(size=8), name='Scatter Plot'))
fig.update_layout(title=f"Time-Series Plot of {str(plot_title)}", xaxis_title='Date', yaxis_title=str(plot_title), template="simple_white")
return fig
# NOTE: Callback to initiate download and update styles of buttons depending on progress
@app.callback(
#Output('progress-bar', 'value', allow_duplicate=True),
Output('progress-bar', 'className'),
Output('pdf-dates-table', 'style_table'),
Output('chunking-button', 'className', allow_duplicate=True),
Output('download-button', 'className'),
Output('download-button', 'disabled'),
Input('download-button', 'n_clicks'),
Input('progress-bar', 'value'),
Input('tabs', 'value'),
prevent_initial_call=True
)
def control_processing(stop_clicks, progress, tab_val):
changed_id = [p['prop_id'] for p in callback_context.triggered][0]
if 'download-button' in changed_id:
# NOTE: Delete old files, Reset the stop flag and start the thread but only when Download is pressed
stop_thread_flag.clear()
if os.path.exists(output_directory):
shutil.rmtree(output_directory)
if os.path.exists(persist_directory):
shutil.rmtree(persist_directory, ignore_errors=True)
if tab_val == 'tab-1':
threading.Thread(target=fed_download).start()
elif tab_val == 'tab-2':
threading.Thread(target=boe_download).start()
elif tab_val == 'tab-3':
threading.Thread(target=ecb_download).start()
return 'mr-3 mt-3 mb-3', {'display': 'block', 'margin-bottom': '3px'}, no_update, no_update, True
elif 'tabs' in changed_id:
# NOTE: logic moved to render_content()
# Set the stop flag
# stop_thread_flag.set()
return 'd-none', {'display': 'none'}, no_update, no_update, False
elif 'progress-bar' in changed_id and progress > 98:
return 'd-none', {'display': 'none'}, 'mr-3 mt-3 mb-3', 'd-none', no_update
return no_update, no_update, no_update, no_update, no_update # Reset start button clicks to prevent multiple starts
# NOTE: Callback to update download progress bar
# It pretty much can be left on its own
# But we need to add datatable update & anything else that might require interval
@app.callback(
Output('progress-bar', 'value'),
Output('progress-bar', 'label'),
Output('pdf-dates-table', 'data'),
Output('chunking-button', 'className'),
Input('interval-component', 'n_intervals')
)
def update_progress(n):
while not progress_queue.empty():
try:
# Check if there's a new item in the queue
item_val = progress_queue.get_nowait()
progress = round(item_val,1)
label = f'{progress}% (Downloading PDFs)'
data = [{'File Path': key, 'Author': pdf_dates[key]['author'], 'Date': pdf_dates[key]['date']} for key in pdf_dates.keys()]
return progress, label, data, 'd-none'
except queue.Empty:
break
if seconddb_flag.is_set() and vectordb_dict['vectordb'] is not None:
return no_update, no_update, no_update, 'd-none'
return no_update, no_update, no_update, no_update # If no new progress or data, return no update
@callback(Output('tabs-content', 'children'),
Output('password-output', 'children'),
Input('tabs', 'value'),
Input('password-input', 'value'))
def render_content(tab, password):
# HACK: this should prevent switching tab while pipe_langchain() is running, i.e. database is being set
# seconddb_flag is needed to keep chunking button enabled when tab is switched but vectordb is not None
if database_flag.is_set():
raise PreventUpdate
if tab == 'tab-1': # we need a flag for DB_run
docs_dict['docs_list'] = None
stop_thread_flag.set()
seconddb_flag.clear()
return html.Div([
html.I(className="bi bi-bank2", style=dict(display='inline-block',fontSize='2rem')),
html.H3('Federal Reserve', className='mr-3 mt-3 mb-0', style={'display':'inline-block','margin-left':'10px'}),
dummy_download_and_progress()
]), validate_password(password)
elif tab == 'tab-2':
docs_dict['docs_list'] = None
stop_thread_flag.set()
seconddb_flag.clear()
return html.Div([
html.I(className="bi bi-bank2", style=dict(display='inline-block',fontSize='2rem')),
html.H3('Bank of England', className='mr-3 mt-3 mb-0', style={'display':'inline-block','margin-left':'10px'}),
dummy_download_and_progress()
]), validate_password(password)
elif tab == 'tab-3':
docs_dict['docs_list'] = None
stop_thread_flag.set()
seconddb_flag.clear()
return html.Div([
html.I(className="bi bi-bank2", style=dict(display='inline-block',fontSize='2rem')),
html.H3('European Central Bank', className='mr-3 mt-3 mb-0', style={'display':'inline-block','margin-left':'10px'}),
dummy_download_and_progress()
]), validate_password(password)
@app.callback(
Output('chunking-button', 'children'),
Output('chunking-button', 'disabled'),
Input('chunking-button', 'n_clicks'),
prevent_initial_call=True
)
def chuncking(n_clicks):
if n_clicks > 0:
if os.environ["OPENAI_API_KEY"].startswith("sk-"):
thread = threading.Thread(target=pipe_langchain, args=(persist_directory,))
thread.start()
return [dbc.Spinner(size="sm"), " Setting-up a Vector Database..."], True
else:
return ["2. SUPPLY A VALID KEY TO PROGRESS ",html.I(className="bi bi-exclamation-triangle", style=dict(display='inline-block'))], True
# callback to print docs[0] in "output" of button_group when dbc.RadioItems is selected
@app.callback(
Output("output", "children"),
Input("radios", "value"),
State("tabs", "value")
)
def print_docs(radio_val,tab_val):
docs_dict['docs_list'] = None
query = ''
if tab_val == 'tab-1':
if radio_val == 'CPI':
query = f"forecast outlook for CPI Inflation for {current_date.year} and next 5 years"
elif radio_val == 'Rates':
query = f"forecast outlook and past FOMC decisions for federal funds rate {current_date.year} and next 5 years"
elif radio_val == 'GDP':
query = f"forecast outlook for economic activity and Real GDP Growth for {current_date.year} and next 5 years"
elif radio_val == 'Consumption':
query = f"forecast outlook for Consumer Spending and Retail Sales for {current_date.year} and next 5 years"
elif radio_val == 'Savings':
query = f"forecast outlook for Household Savings for {current_date.year} and next 5 years"
elif radio_val == 'Unemployment':
query = f"forecast outlook for Labor Market and Unemployment Rate for {current_date.year} and next 5 years"
elif radio_val == 'Oil':
query = f"forecast outlook for Oil Prices and Energy for {current_date.year} and next 5 years"
elif tab_val == 'tab-2':
if radio_val == 'CPI':
query = f"MPC forecast outlook for CPI Inflation for {current_date.year} and next 5 years"
elif radio_val == 'Rates':
query = f"MPC forecast outlook and past decisions for Bank Rate for {current_date.year} and next 5 years"
elif radio_val == 'GDP':
query = f"MPC forecast and economic outlook for Real GDP Growth in the UK for {current_date.year} and next 5 years"
elif radio_val == 'Consumption':
query = f"MPC forecast outlook for Consumer Spendings for {current_date.year} and next 5 years"
elif radio_val == 'Savings':
query = f"MPC forecast outlook for Household Saving Ratio for {current_date.year} and next 5 years"
elif radio_val == 'Unemployment':
query = f"MPC forecast outlook for Labour Market and Unemployment Rate in the UK for {current_date.year} and next 5 years"
elif radio_val == 'Oil':
query = f"MPC forecast outlook for Oil and Energy Prices for {current_date.year} and next 5 years"
elif tab_val =='tab-3':
if radio_val == 'CPI':
query = f"forecast outlook for CPI Inflation in Euro area for {current_date.year} and next 5 years"
elif radio_val == 'Rates':
query = f"past decisions of Governing Council and future outlook for key ECB interest rates (MRO, deposit facility, marginal lending facility) for {current_date.year} and next 5 years"
elif radio_val == 'GDP':
query = f"forecast outlook for economic activity and Real GDP Growth in Euro area for {current_date.year} and next 5 years"
elif radio_val == 'Consumption':
query = f"forecast outlook for Consumer Spendings and Retail Sales in Euro area for {current_date.year} and next 5 years"
elif radio_val == 'Savings':
query = f"forecast outlook for Households Saving Rate for {current_date.year} and next 5 years"
elif radio_val == 'Unemployment':
query = f"forecast outlook for Labour Market and Unemployment in Euro Area for {current_date.year} and next 5 years"
elif radio_val == 'Oil':
query = f"forecast outlook for Oil and Energy Prices for {current_date.year} and next 5 years"
plot_dict["title"] = radio_val
plot_dict["query"] = query
if database_flag.is_set():
return dbc.Alert("the Database is being set-up... Please wait for the spinner to disappear and retry your selection!", color="warning", className='mt-3')
elif stop_thread_flag.is_set():
# NOTE: This branch deletes/tries vectordb when tab is swithced. First, it listens to thread
if vectordb_dict['vectordb'] is not None:
if thread is not None:
thread.join()
print('pipelang closed')
vectordb_dict['vectordb'].delete_collection()
vectordb_dict['vectordb'].persist()
vectordb_dict['vectordb'] = None
# FIXME: need to format ./db folder, otherwise new documents are appended to old ones, I keep chroma in-memory for now
# TODO: delete db/chroma.sqlite3
return html.Div()
elif vectordb_dict['vectordb'] is not None and not database_flag.is_set():
# NOTE: This branch does heavy lifting of retreving relevant chunks from vectordb
retriever = vectordb_dict['vectordb'].as_retriever(search_kwargs={"k": 8})
docs_dict['docs_list'] = retriever.get_relevant_documents(query, verbose=True)
if docs_dict['docs_list'] is not None:
print(f"query:{query}")
print(f"Doc:{docs_dict['docs_list'][0]}")
metadata_copy = docs_dict['docs_list'][0].metadata.copy()
metadata_copy['date'] = datetime.strptime(metadata_copy['date'], '%Y-%m-%dT%H:%M:%S').strftime('%Y-%b')
metadata_copy['source'] = metadata_copy['source'].split(os.sep)[-1][:-4]
# FIXME: retriever prevents db/chroma.sqlite3 from being deleted
# TODO: assign vectirdb to None to close connection, NOTE: connection cant be reinstated without rerunning embedding model
return dbc.Card([
html.H5('Most Relevant Context:',style={'fontWeight': 'bold'}),
dcc.Markdown(docs_dict['docs_list'][0].page_content,dangerously_allow_html=True),
dcc.Markdown("\n\n".join([f'{key}: {value}' for key, value in metadata_copy.items()]), dangerously_allow_html=True)
], body=True, className="shadow-sm p-3 mt-3 bg-light rounded")
else:
return html.Div()
@app.callback(
Output('submit-button', 'children'),
Output('submit-button', 'disabled'),
Input('submit-button', 'n_clicks'),
prevent_initial_call=True
)
def submit_func(n_clicks):
if n_clicks > 0 and seconddb_flag.is_set():
return [dbc.Spinner(size="sm"), " Thinking..."], True
@app.callback(
Output("output-prompt", "children"),
Output('submit-button', 'children', allow_duplicate=True),
Output('submit-button', 'disabled', allow_duplicate=True),
[Input('submit-button', 'n_clicks')],
[State("prompt-input", "value")],
prevent_initial_call=True
)
def prompt_result(n_clicks,texty):
if n_clicks > 0:
if docs_dict['docs_list'] is not None:
openai.api_key = os.environ.get("OPENAI_API_KEY")
chunk1 = docs_dict['docs_list'][0]
chunk2 = docs_dict['docs_list'][1]
chunk3 = docs_dict['docs_list'][2]
chunk4 = docs_dict['docs_list'][3]
chunk5 = docs_dict['docs_list'][4]
chunk6 = docs_dict['docs_list'][5]
chunk7 = docs_dict['docs_list'][6]
chunk8 = docs_dict['docs_list'][7]
system_prompt = f"""
You are expert macroeconomic analyst. Your purpose is to summarise and find relevant information such as trends, forecasts, judgements, reasons from central banks publication supplied.
Below are paragraphs delimited by ---. Return metadata of paragraphs used in answer at the end of response (source, page, date), always split metadata from the rest of response by ///.
---
{chunk1}
---
{chunk2}
---
{chunk3}
---
{chunk4}
---
{chunk5}
---
{chunk6}
---
{chunk7}
---
{chunk8}
---
Each paragraph has its own publication date, if facts conflict, use paragraphs with latest publication date. Please answer the following user question (strictly) based on the facts above, you can do it!:
"""
context = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": texty}
]
# Send a message and receive a response
response = openai.ChatCompletion.create(
model="gpt-4-1106-preview",
messages=context
)
# Extract and print the assistant's reply
assistant_reply = response.choices[0].message['content']
return html.Div([html.Br(), dcc.Markdown(assistant_reply,dangerously_allow_html=True)]), ['Submit Prompt ',html.I(className="bi bi-send", style=dict(display='inline-block',fontSize='1rem'))], False
return no_update, no_update , no_update
@app.callback(
Output("collapse-button", "children", allow_duplicate=True),
Output("collapse-button", "disabled", allow_duplicate=True),
[Input("collapse-button", "n_clicks")],
prevent_initial_call=True
)
def collapse_loading(n):
if n > 0:
return [dbc.Spinner(size="sm"), " Thinking..."], True
@app.callback(
Output("collapse", "is_open"),
Output("plot-device", "figure"),
Output("collapse-button", "children"),
Output("collapse-button", "disabled"),
[Input("collapse-button", "n_clicks")],
[State("collapse", "is_open")]
)
def toggle_collapse(n, is_open):
fig = go.Figure()
if n % 2 != 0:
fig = plot_gpt(plot_dict["query"],plot_dict["title"])
return not is_open, fig, [html.I(className="bi bi-graph-down-arrow", style=dict(display='inline-block'))," Collapse the Plot"], False
elif n == 0:
return is_open, fig, [html.I(className="bi bi-graph-up-arrow", style=dict(display='inline-block'))," Generate a Plot"], False
else:
return not is_open, fig, [html.I(className="bi bi-graph-up-arrow", style=dict(display='inline-block'))," Regenerate the Plot"], False
# Run the app
if __name__ == '__main__':
app.run_server(debug=False)