This repository has been archived by the owner on Jul 14, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGRU2GRU_letter_dropout.py
251 lines (171 loc) · 5.34 KB
/
GRU2GRU_letter_dropout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
"""
Sequence to Sequence model
-- Inputs
Korean letter level (가-힣)
(Only the characters in the dataset)
조합된 글자 자체를 출력하면서 데이터 셋에 있는 글자만 사용
--- With DROPOUT ---
"""
from os.path import splitext
file_name = splitext(__file__)[0]
print("Running: ", file_name)
## Disable debugging logs
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
## Ready for data Pre-Processing
# Special letter
space = ' '
special_letters = [space]
# English data
big = [chr(i) for i in range(ord('A'), ord('Z')+1)]
small = [chr(i) for i in range(ord('a'), ord('z')+1)]
english_letter_list = big + small
# Add special letters
english_letter_list.extend(special_letters)
# Make index mapping
idx2english = dict(enumerate(english_letter_list, 1))
english2idx = {v: k for k, v in idx2english.items()}
# Read dataset
import numpy as np
import pandas as pd
df = pd.read_csv('data/full_data.csv', encoding='utf8')
# Korean data
hang = df['hang'].values
korean_letter_list = list(set([letter for sent in hang for letter in sent]))
# Make index mapping
idx2korean = dict(enumerate(korean_letter_list, 1))
korean2idx = {v: k for k, v in idx2korean.items()}
# Load X
roma = df['roma'].apply(lambda x: np.array([english2idx[letter] for letter in x]))
roma_df = pd.DataFrame(roma)
X = pd.DataFrame(roma_df['roma'].tolist()).values
# Replace nan to 0
# Get index of nan, and make them 0
X[np.isnan(X)] = 0
# Load y
hang = df['hang'].apply(lambda x: np.array([korean2idx[letter] for letter in x]))
hang_df = pd.DataFrame(hang)
y = pd.DataFrame(hang_df['hang'].tolist()).values
# Replace nan to 0
# Get index of nan, and make them 0
y[np.isnan(y)] = 0
# one hot encoding
from keras.utils import np_utils
y = np_utils.to_categorical(y, num_classes=len(korean_letter_list)+1).reshape(y.shape[0], y.shape[1], len(korean_letter_list)+1)
# Split train & test & val set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.1)
# ## Hyper Parameters
from keras.layers import recurrent
# Parameters for the model and dataset
TRAINING_SIZE = 50000
VOCAB_SIZE = 12
INVERT = True
HIDDEN_SIZE = 200
BATCH_SIZE = 100
LAYERS = 2
MAX_EPOCHS = 100
EMBEDDING_OUTPUT_SIZE = 128
MAX_OUTPUT_SENT_LENGTH = y.shape[1]
DROPOUT_RATE = 0.25
RNN = recurrent.GRU
stop_monitor = 'val_acc'
stop_delta = 0.0
stop_epochs = 20
# ## Build Model
# In[25]:
from keras.models import Sequential, load_model
from keras.layers import Dense, TimeDistributed, Activation, RepeatVector, Embedding, Dropout
print('Build Model...')
RNN = recurrent.GRU
model = Sequential()
model.add(Embedding(
input_dim=len(english_letter_list)+1, # 단어 갯수 + padding (1)
output_dim=200, # 출력 벡터
input_length=X.shape[1] # 입력 길이
))
model.add(RNN(HIDDEN_SIZE, return_sequences=True, input_shape=(X.shape[1], )))
model.add(RNN(HIDDEN_SIZE))
model.add(RepeatVector(MAX_OUTPUT_SENT_LENGTH)) # Maximum output length
for _ in range(LAYERS):
model.add(RNN(HIDDEN_SIZE, return_sequences=True))
model.add(Dropout(DROPOUT_RATE))
model.add(TimeDistributed(Dense(len(korean_letter_list)+1)))
model.add(Activation('softmax'))
model.compile(
loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy']
)
model.summary()
print('Done')
# Callbacks
from keras.callbacks import EarlyStopping, TensorBoard, ModelCheckpoint
## Visualize keras training status
from keras_tqdm import TQDMCallback
log_dir = './logs/' + file_name
callbacks_list = [
EarlyStopping(
monitor=stop_monitor,
min_delta=stop_delta,
patience=stop_epochs,
verbose=1,
mode='auto',
),
TQDMCallback(
leave_inner=False,
leave_outer=True
),
TensorBoard(
log_dir=log_dir
),
ModelCheckpoint(
filepath='./models/' + file_name + '_checkpoint',
monitor=stop_monitor,
save_best_only=True,
verbose=1,
mode='auto',
),
]
hist = model.fit(
X_train, y_train,
validation_data=(X_val, y_val),
batch_size=BATCH_SIZE,
epochs=MAX_EPOCHS,
callbacks=callbacks_list,
verbose=0
)
## Visualize history
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
fig, loss_ax = plt.subplots()
acc_ax = loss_ax.twinx()
plt.title(file_name)
loss_ax.plot(hist.history['loss'], 'y', label='train loss')
loss_ax.plot(hist.history['val_loss'], 'g', label='val loss')
acc_ax.plot(hist.history['acc'], 'b', label='train acc')
acc_ax.plot(hist.history['val_acc'], 'r', label='val acc')
loss_ax.set_xlabel('epoch')
loss_ax.set_ylabel('loss')
acc_ax.set_ylabel('accuracy')
loss_ax.legend(loc='upper left')
acc_ax.legend(loc='lower left')
image_path = 'results/' + file_name + '.png'
fig.savefig(image_path)
print()
print('Save graph at: ', image_path)
loss, acc = model.evaluate(X_test, y_test)
model.save('./models/' + file_name + '_latest')
print()
print("Save model at: ", './models/' + file_name + '_latest')
loaded_model = load_model('./models/' + file_name + '_checkpoint')
loaded_loss, loaded_acc = loaded_model.evaluate(X_test, y_test)
print()
print("Last Model: ")
print('Loss: %.2f' % loss)
print('Accuracy: %.2f' % acc)
print("Saved Best Model: ")
print('Loss: %.2f' % loaded_loss)
print('Accuracy: %.2f' % loaded_acc)