-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathGraphicsUserInterface.py
259 lines (193 loc) · 9.95 KB
/
GraphicsUserInterface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
from matplotlib.widgets import Button
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.animation as animation
from matplotlib.widgets import TextBox
import numpy
import scipy.misc
class GraphicsUserInterface:
def identifyObservation(self, semantics : dict, xpos : float, ypos : float):
# semantics # Observation - List of Semantics
totList = []
for observation, semanticList in semantics.items():
for semantic in semanticList:
if type(semantic) == patches.Rectangle:
if xpos >= semantic.get_x() and xpos <= semantic.get_x() + semantic.get_width():
if ypos >= semantic.get_y() and ypos <= semantic.get_y() + semantic.get_height():
totList.append((observation, semantic))
return totList # List of (Observation , patches.Rectangle)
def draw(self, imageReal : list, imageObserved : list, width1 : int, height1 : int, width2 : int, height2 : int,
semantics : dict, texts : list, lambdaNewCaps, lambdaTrainCaps, lambdaNewAttr, lambdaTrainAttr,
save : bool = False, recommendation : str = None):
# semantics # Observation - List of Semantics
selectedObs = []
newNameCaps = [""] # Faking Pointers..
newNameAttr = [""] # Faking Pointers..
def mouseClick(event):
if event.xdata is None or event.ydata is None or event.button is None:
# No Interesting Data..
return
if event.inaxes != axarr[0][2]:
# Wrong Axis
return
obsSemList = self.identifyObservation(semantics, event.xdata, event.ydata)
if obsSemList is False:
return
for obs, semantic in obsSemList:
if event.button == 1 and obs not in selectedObs:
# Left Mouse Button -> Add
selectedObs.append(obs)
semantic.set_edgecolor('blue')
elif event.button == 1 and obs in selectedObs:
# Right Mouse Button -> Remove
selectedObs.remove(obs)
semantic.set_edgecolor('yellow')
fig.canvas.draw()
def runButtonA(event):
if len(selectedObs) > 0 and len(newNameCaps[0]) > 0:
lambdaNewCaps(newNameCaps[0], selectedObs)
plt.close()
def runButtonB(event):
if len(selectedObs) > 0 and len(newNameCaps[0]) > 0:
lambdaTrainCaps(newNameCaps[0], selectedObs)
plt.close()
def runButtonC(event):
if len(selectedObs) > 0 and len(newNameCaps[0]) > 0 and len(newNameAttr[0]) > 0:
lambdaNewAttr(newNameCaps[0], newNameAttr[0], selectedObs)
plt.close()
def runButtonD(event):
if len(selectedObs) > 0 and len(newNameCaps[0]) > 0 and len(newNameAttr[0]) > 0:
lambdaTrainAttr(newNameCaps[0], newNameAttr[0], selectedObs)
plt.close()
def onTextSubmitCaps(text):
newNameCaps[0] = text
def onTextSubmitAttr(text):
newNameAttr[0] = text
pixels1 = [0.0] * (width1 * height1 * 3)
pixels2 = [0.0] * (width2 * height2 * 3)
for yy in range(height1):
for xx in range(width1):
pixels1[(yy * width1 + xx) * 3] = imageReal[(yy * width1 + xx) * 4]
pixels1[(yy * width1 + xx) * 3 + 1] = imageReal[(yy * width1 + xx) * 4]
pixels1[(yy * width1 + xx) * 3 + 2] = imageReal[(yy * width1 + xx) * 4]
for yy in range(height2):
for xx in range(width2):
pixels2[(yy * width2 + xx) * 3] = imageObserved[(yy * width2 + xx) * 4]
pixels2[(yy * width2 + xx) * 3 + 1] = imageObserved[(yy * width2 + xx) * 4]
pixels2[(yy * width2 + xx) * 3 + 2] = imageObserved[(yy * width2 + xx) * 4]
fig, axarr = plt.subplots(2,3)
imageData = numpy.reshape(pixels1, [height1, width1, 3])
axarr[0][0].imshow(imageData)
axarr[0][1].imshow(numpy.reshape(pixels2, [height2, width2, 3]))
axarr[0][2].imshow(numpy.reshape(pixels2, [height2, width2, 3]))
axarr[0][0].set_axis_off()
axarr[0][1].set_axis_off()
axarr[0][2].set_axis_off()
axarr[0][0].set_title("Original")
axarr[0][1].set_title("Internal Represenation")
axarr[0][2].set_title("Semantics")
# Hide lower Row to make room for Meta-learning
axarr[1][0].set_axis_off()
axarr[1][1].set_axis_off()
axarr[1][2].set_axis_off()
for semanticList in semantics.values():
for semantic in semanticList:
axarr[0][2].add_patch(semantic)
for text in texts:
axarr[0][2].text(text[0], text[1], text[2], color = 'y', fontsize=8)
if save is True:
scipy.misc.imsave("scene.png", imageData)
if recommendation is not None:
# Meta-Learning
fig.canvas.mpl_connect('button_press_event', mouseClick)
axdesc = plt.axes([0.03, 0.475, 0.94, 0.1])
axdesc.set_axis_off()
axdesc.text(0, 0.0, "(Select or Deselect (LMB) Primitives in 'Semantics' Plot to be combined into a new or existing Semantic Capsule \n and then choose one of the four options below, optionally following the recommendation by the Meta-learning agent)", fontsize=7, wrap=True)
axrec = plt.axes([0.15, 0.4, 0.8, 0.1])
axrec.set_axis_off()
axrec.text(0, 0.0, "Recommendation: " + recommendation, fontsize=10, wrap=True, bbox=dict(facecolor='red', alpha=0.2))
axboxCaps = plt.axes([0.5, 0.25, 0.35, 0.075])
textBoxCaps = TextBox(axboxCaps, 'New/Existing Capsule Name (required)', initial='')
textBoxCaps.on_submit(onTextSubmitCaps)
axboxAttr = plt.axes([0.5, 0.175, 0.35, 0.075])
textBoxAttr = TextBox(axboxAttr, 'New/Existing Attribute Name', initial='')
textBoxAttr.on_submit(onTextSubmitAttr)
# New Capsule
axbtnA = plt.axes([0.0, 0.025, 0.25, 0.075])
bnextA = Button(axbtnA, 'Train New Capsule')
bnextA.on_clicked(runButtonA)
# Existing Capsule
axbtnB = plt.axes([0.25, 0.025, 0.25, 0.075])
bnextB = Button(axbtnB, 'Train Exist. Caps.')
bnextB.on_clicked(runButtonB)
# New Attribute
axbtnC = plt.axes([0.5, 0.025, 0.25, 0.075])
bnextC = Button(axbtnC, 'Train new Attribute')
bnextC.on_clicked(runButtonC)
# Existing Attribute
axbtnD = plt.axes([0.75, 0.025, 0.25, 0.075])
bnextD = Button(axbtnD, 'Train Exist. Attr.')
bnextD.on_clicked(runButtonD)
plt.show()
def drawGame(self, imageObserved : list, width : int, height : int,
lambdaMove, saveId : int = -1):
def runButtonLeft(event):
lambdaMove((-1.0, 0.0))
plt.close()
def runButtonUp(event):
lambdaMove((0.0, 1.0))
plt.close()
def runButtonRight(event):
lambdaMove((1.0, 0.0))
plt.close()
def runButtonDown(event):
lambdaMove((0.0, -1.0))
plt.close()
pixels = [0.0] * (width * height * 3)
for yy in range(height):
for xx in range(width):
pixels[(yy * width + xx) * 3] = imageObserved[(yy * width + xx) * 4]
pixels[(yy * width + xx) * 3 + 1] = imageObserved[(yy * width + xx) * 4]
pixels[(yy * width + xx) * 3 + 2] = imageObserved[(yy * width + xx) * 4]
fig, axarr = plt.subplots(2,1)
imageData = numpy.reshape(pixels, [height, width, 3])
axarr[0].imshow(imageData)
axarr[0].set_axis_off()
axarr[0].set_title("Frame")
# Hide lower Row to make room for Meta-learning
axarr[1].set_axis_off()
if saveId >= 0:
scipy.misc.imsave("scene" + str(saveId) + ".png", imageData)
# Arrow Keys
axbtnUp = plt.axes([0.375, 0.3, 0.25, 0.075])
bnextUp = Button(axbtnUp, 'Up')
bnextUp.on_clicked(runButtonUp)
axbtnLeft = plt.axes([0.1, 0.2, 0.25, 0.075])
bnextLeft = Button(axbtnLeft, 'Left')
bnextLeft.on_clicked(runButtonLeft)
axbtnRight = plt.axes([0.65, 0.2, 0.25, 0.075])
bnextRight = Button(axbtnRight, 'Right')
bnextRight.on_clicked(runButtonRight)
axbtnDown = plt.axes([0.375, 0.1, 0.25, 0.075])
bnextDown = Button(axbtnDown, 'Down')
bnextDown.on_clicked(runButtonDown)
plt.show()
def drawMovie(self, frames : list, width : int, height : int, deltaT : float, save : bool):
# frames # List of List of Pixels
fig = plt.figure()
images = []
for idx, frame in enumerate(frames):
pixels = [0.0] * (width * height * 3)
for yy in range(height):
for xx in range(width):
pixels[(yy * width + xx) * 3] = frame[(yy * width + xx) * 4]
pixels[(yy * width + xx) * 3 + 1] = frame[(yy * width + xx) * 4]
pixels[(yy * width + xx) * 3 + 2] = frame[(yy * width + xx) * 4]
imageData = numpy.reshape(pixels, [height, width, 3])
newImage = plt.imshow(imageData)
images.append([newImage])
if save is True:
scipy.misc.imsave("videoframe" + str(idx) + ".png", imageData)
fullAnim = animation.ArtistAnimation(fig, images, interval=deltaT * 1000, repeat_delay=0,
blit=True)
plt.show()