forked from maoaiz/tsp-genetic-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtsp-genetic-python.py
797 lines (617 loc) · 23.7 KB
/
tsp-genetic-python.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
'''
Genetic Algorithm for the Travelling Salesman Problem
v1.0
by
JackFrigaard
Written for Python 3.1+
'''
import random
import copy
import os
import time
import math
import csv
import pyscreenshot as ImageGrab
import re
regex = r"x|\+"
try:
from tkinter import *
from tkinter.ttk import *
except Exception as e:
print("[ERROR]: {0}".format(e))
from Tkinter import *
list_of_cities =[]
#########################################
###### ######
###### Algorithm paremeters: ######
###### ######
#########################################
# probability that an individual Route will mutate
k_mut_prob = 0.5
# Number of generations to run for
k_n_generations = 100
# Population size of 1 generation (RoutePop)
k_population_size = 200
# Size of the tournament selection.
tournament_size = 100
# If elitism is True, the best from one generation will carried over to the next.
elitism = True
# Read city data from csv?
csv_cities = False
# Full path for csv file. The r prefix avoids any conflicts with backslashes.
csv_name = 'cities.csv'
# Interval screenshots are made in?
screenshotInterval = 25
# City class
class City(object):
"""
Stores City objects. Upon initiation, automatically appends itself to list_of_cities
self.x: x-coord
self.y: y-coord
self.graph_x: x-coord for graphic representation
self.graph_y: y-coord for graphic representation
self.name: human readable name.
self.distance_to: dictionary of distances to other cities (keys are city names, values are floats)
"""
def __init__(self, name, x, y, distance_to=None):
# Name and coordinates:
self.name = name
self.x = self.graph_x = x
self.y = self.graph_y = y
# Appends itself to the global list of cities:
list_of_cities.append(self)
# Creates a dictionary of the distances to all the other cities (has to use a value so uses itself - always 0)
self.distance_to = {self.name:0.0}
if distance_to:
self.distance_to = distance_to
def calculate_distances(self):
'''
self --> None
Calculates the distances of the
city to all other cities in the global
list list_of_cities, and places these values
in a dictionary called self.distance_to
with city name keys and float values
'''
for city in list_of_cities:
tmp_dist = self.point_dist(self.x, self.y, city.x, city.y)
self.distance_to[city.name] = tmp_dist
# Calculates the distance between two cartesian points..
def point_dist(self, x1,y1,x2,y2):
return ((x1-x2)**2 + (y1-y2)**2)**(0.5)
# Route Class
class Route(object):
"""
Stores an ordered list of all the City objects in the global list_of_cities.
Also stores information about the route.
self.route: list of cities in list_of_cities. Randomly shuffled upon __init__
self.length: float length of route (full loop)
self.is_valid_route(): Returns True if the route contains all cities in list_of_cities ONCE and ONLY ONCE
self.pr_cits_in_rt(): Prints all the cities in the route, in the form <cityname1,cityname2,cityname3...>
self.pr_vrb_cits_in_rt: Prints all the coordinate pairs of the cities in the route, in the form <|x,y|x,y|x,y|...>
"""
def __init__(self):
# initiates a route attribute equal to a randomly shuffled list_of_cities
self.route = sorted(list_of_cities, key=lambda *args: random.random())
### Calculates its length:
self.recalc_rt_len()
def recalc_rt_len(self):
'''
self --> None
Method to re-calculate the route length
if the self.route attribute has been changed manually.
'''
# Zeroes its length
self.length = 0.0
# for every city in its route attribute:
for city in self.route:
# set up a next city variable that points to the next city in the list
# and wraps around at the end:
next_city = self.route[self.route.index(city)-len(self.route)+1]
# Uses the first city's distance_to attribute to find the distance to the next city:
dist_to_next = city.distance_to[next_city.name]
# adds this length to its length attr.
self.length += dist_to_next
def pr_cits_in_rt(self, print_route=False):
'''
self --> None
Prints all the cities in the route, in the form <cityname1,cityname2,cityname3...>
'''
cities_str = ''
for city in self.route:
cities_str += city.name + ','
cities_str = cities_str[:-1] # chops off last comma
if print_route:
print(' ' + cities_str)
def pr_vrb_cits_in_rt(self):
'''
self --> None
Prints all the coordinate pairs of the cities in the route, in the form <|x,y|x,y|x,y|...>
'''
cities_str = '|'
for city in self.route:
cities_str += str(city.x) + ',' + str(city.y) + '|'
print(cities_str)
def is_valid_route(self):
'''
self --> Bool()
Returns True if the route contains all cities in list_of_cities ONCE and ONLY ONCE
i.e. returns False if there are duplicates.
Use: if there are multiples of the same city in a route,
it will converge until all the cities are that same city (length = 0)
'''
for city in list_of_cities:
# helper function defined up to
if self.count_mult(self.route,lambda c: c.name == city.name) > 1:
return False
return True
# Returns the number of pred in sequence (duplicate checking.)
def count_mult(self, seq, pred):
return sum(1 for v in seq if pred(v))
# Contains a population of Route() objects
class RoutePop(object):
"""
Contains a list of route objects and provides info on them.
self.rt_pop: list of Route objects
self.size: lenth of rt_pop - specified upon __init__
self.fittest: Route() object with shortest length from self.rt_pop
self.get_fittest(): Calcualtes fittest route, sets self.fittest to it, and returns the Route. Use if routes have changed manually.
"""
def __init__(self, size, initialise):
self.rt_pop = []
self.size = size
# If we want to initialise a population.rt_pop:
if initialise:
for x in range(0,size):
new_rt = Route()
self.rt_pop.append(new_rt)
self.get_fittest()
def get_fittest(self):
'''
self --> Route()
Returns the two shortest routes in the population, in a list called self.top_two
'''
# sorts the list based on the routes' lengths
sorted_list = sorted(self.rt_pop, key=lambda x: x.length, reverse=False)
self.fittest = sorted_list[0]
return self.fittest
# Class for bringing together all of the methods to do with the Genetic Algorithm
class GA(object):
"""
Class for running the genetic algorithm. Do not __init__ - Class only provides methods.
crossover(parent1, parent2): Returns a child route after breeding the two parent routes.
"""
def crossover_experimental(routeA,routeB):
'''
Experimental crossover algorithm using a spidering-out idea. Less effective at the moment.
'''
# new child Route()
child_rt = Route()
# prevents from recalculating
routeB_len = len(routeB.route)
# Chooses a random city
random_city = random.choice(list_of_cities)
# routeA going down
# routeB going up
incrementing_a = True
incrementing_b = True
idx_a = routeA.route.index(random_city)
idx_b = routeB.route.index(random_city)
idx_a -= 1
idx_b += 1
if idx_a < 0:
incrementing_a = False
if idx_b >= routeB_len:
incrementing_b = False
child_rt.route = [random_city]
# print(random_city.name)
while (incrementing_a and incrementing_b):
# print('idx_a: {}'.format(idx_a))
if idx_a >= 0:
if not (routeA.route[idx_a] in child_rt.route):
child_rt.route.insert(0, routeA.route[idx_a])
idx_a -= 1
if idx_a < 0:
incrementing_a = False
break
# child_rt.pr_cits_in_rt()
if idx_b < routeB_len:
if not (routeB.route[idx_b] in child_rt.route):
child_rt.route.append(routeB.route[idx_b])
idx_b += 1
if idx_b >= routeB_len:
incrementing_b = False
break
# print('idx_b: {}'.format(idx_b))
# child_rt.pr_cits_in_rt()
# now either incrementing_a or incementing_b must be false
shuffled_cities = sorted(routeA.route, key=lambda *args: random.random())
for city in shuffled_cities:
if not city in child_rt.route:
child_rt.route.append(city)
return child_rt
def crossover(self, parent1, parent2):
'''
Route(), Route() --> Route()
Returns a child route Route() after breeding the two parent routes.
Routes must be of same length.
Breeding is done by selecting a random range of parent1, and placing it into the empty child route (in the same place).
Gaps are then filled in, without duplicates, in the order they appear in parent2.
For example:
parent1: 0123456789
parent1: 5487961320
start_pos = 0
end_pos = 4
unfilled child: 01234*****
filled child: 0123458796
* = None
'''
# new child Route()
child_rt = Route()
for x in range(0,len(child_rt.route)):
child_rt.route[x] = None
# Two random integer indices of the parent1:
start_pos = random.randint(0,len(parent1.route))
end_pos = random.randint(0,len(parent1.route))
#### takes the sub-route from parent one and sticks it in itself:
# if the start position is before the end:
if start_pos < end_pos:
# do it in the start-->end order
for x in range(start_pos,end_pos):
child_rt.route[x] = parent1.route[x] # set the values to eachother
# if the start position is after the end:
elif start_pos > end_pos:
# do it in the end-->start order
for i in range(end_pos,start_pos):
child_rt.route[i] = parent1.route[i] # set the values to eachother
# Cycles through the parent2. And fills in the child_rt
# cycles through length of parent2:
for i in range(len(parent2.route)):
# if parent2 has a city that the child doesn't have yet:
if not parent2.route[i] in child_rt.route:
# it puts it in the first 'None' spot and breaks out of the loop.
for x in range(len(child_rt.route)):
if child_rt.route[x] == None:
child_rt.route[x] = parent2.route[i]
break
# repeated until all the cities are in the child route
# returns the child route (of type Route())
child_rt.recalc_rt_len()
return child_rt
def mutate(self, route_to_mut):
'''
Route() --> Route()
Swaps two random indexes in route_to_mut.route. Runs k_mut_prob*100 % of the time
'''
# k_mut_prob %
if random.random() < k_mut_prob:
# two random indices:
mut_pos1 = random.randint(0,len(route_to_mut.route)-1)
mut_pos2 = random.randint(0,len(route_to_mut.route)-1)
# if they're the same, skip to the chase
if mut_pos1 == mut_pos2:
return route_to_mut
# Otherwise swap them:
city1 = route_to_mut.route[mut_pos1]
city2 = route_to_mut.route[mut_pos2]
route_to_mut.route[mut_pos2] = city1
route_to_mut.route[mut_pos1] = city2
# Recalculate the length of the route (updates it's .length)
route_to_mut.recalc_rt_len()
return route_to_mut
def mutate_2opt(route_to_mut):
'''
Route() --> Route()
Swaps two random indexes in route_to_mut.route. Runs k_mut_prob*100 % of the time
'''
# k_mut_prob %
if random.random() < k_mut_prob:
for i in range(len(route_to_mut.route)):
for ii in range(len(route_to_mut.route)): # i is a, i + 1 is b, ii is c, ii+1 is d
if (route_to_mut.route[i].distance_to[route_to_mut.route[i-len(route_to_mut.route)+1].name]
+ route_to_mut.route[ii].distance_to[route_to_mut.route[ii-len(route_to_mut.route)+1].name]
> route_to_mut.route[i].distance_to[route_to_mut.route[ii].name]
+ route_to_mut.route[i-len(route_to_mut.route)+1].distance_to[route_to_mut.route[ii-len(route_to_mut.route)+1].name]):
c_to_swap = route_to_mut.route[ii]
b_to_swap = route_to_mut.route[i-len(route_to_mut.route)+1]
route_to_mut.route[i-len(route_to_mut.route)+1] = c_to_swap
route_to_mut.route[ii] = b_to_swap
route_to_mut.recalc_rt_len()
return route_to_mut
def tournament_select(self, population):
'''
RoutePop() --> Route()
Randomly selects tournament_size amount of Routes() from the input population.
Takes the fittest from the smaller number of Routes().
Principle: gives worse Routes() a chance of succeeding, but favours good Routes()
'''
# New smaller population (not intialised)
tournament_pop = RoutePop(size=tournament_size,initialise=False)
# fills it with random individuals (can choose same twice)
for i in range(tournament_size-1):
tournament_pop.rt_pop.append(random.choice(population.rt_pop))
# returns the fittest:
return tournament_pop.get_fittest()
def evolve_population(self, init_pop):
'''
RoutePop() --> RoutePop()
Takes a population and evolves it then returns the new population.
'''
#makes a new population:
descendant_pop = RoutePop(size=init_pop.size, initialise=True)
# Elitism offset (amount of Routes() carried over to new population)
elitismOffset = 0
# if we have elitism, set the first of the new population to the fittest of the old
if elitism:
descendant_pop.rt_pop[0] = init_pop.fittest
elitismOffset = 1
# Goes through the new population and fills it with the child of two tournament winners from the previous populatio
for x in range(elitismOffset,descendant_pop.size):
# two parents:
tournament_parent1 = self.tournament_select(init_pop)
tournament_parent2 = self.tournament_select(init_pop)
# A child:
tournament_child = self.crossover(tournament_parent1, tournament_parent2)
# Fill the population up with children
descendant_pop.rt_pop[x] = tournament_child
# Mutates all the routes (mutation with happen with a prob p = k_mut_prob)
for route in descendant_pop.rt_pop:
if random.random() < 0.3:
self.mutate(route)
# Update the fittest route:
descendant_pop.get_fittest()
return descendant_pop
class App(object):
"""
Runs the application
"""
def __init__(self,n_generations,pop_size, graph=False, screenInterval=0):
'''
Initiates an App object to run for n_generations with a population of size pop_size
'''
if csv_cities:
self.read_csv()
self.n_generations = n_generations
self.pop_size = pop_size
self.screenInterval = screenInterval
# Once all the cities are defined, calcualtes the distances for all of them.
# for city in list_of_cities:
# city.calculate_distances()
if graph:
self.set_city_gcoords()
# Initiates a window object & sets its title
self.window = Tk()
self.window.wm_title("Generation 0")
# initiates two canvases, one for current and one for best
self.canvas_current = Canvas(self.window, height=350, width=350)
self.canvas_best = Canvas(self.window, height=350, width=350)
# Initiates two labels
self.canvas_current_title = Label(self.window, text="Best route of current gen:")
self.canvas_best_title = Label(self.window, text="Overall best so far:")
# Initiates a status bar with a string
self.stat_tk_txt = StringVar()
self.status_label = Label(self.window, textvariable=self.stat_tk_txt, relief=SUNKEN, anchor=W)
# creates dots for the cities on both of the canvases
for city in list_of_cities:
self.canvas_current.create_oval(city.graph_x-2, city.graph_y-2, city.graph_x + 2, city.graph_y + 2, fill='blue')
self.canvas_best.create_oval(city.graph_x-2, city.graph_y-2, city.graph_x + 2, city.graph_y + 2, fill='blue')
# Packs all the widgets (physically creates them and places them in order)
self.canvas_current_title.pack()
self.canvas_current.pack()
self.canvas_best_title.pack()
self.canvas_best.pack()
self.status_label.pack(side=BOTTOM, fill=X)
#set up geometry
# geo = self.window.geometry() #show current
#self.window.geometry("+0+0")
# Runs the main window loop
self.window_loop(graph)
else:
print("Calculating GA_loop")
self.GA_loop(n_generations,pop_size, graph=graph)
def set_city_gcoords(self):
'''
All cities have graph_x and graph_y attributes that are only referenced when showing them on the map.
This method takes the original city.x and city.y and transforms them so that the coordinates map fully onto the 300x300 map view.
'''
# defines some variables (we will set them next)
min_x = 100000
max_x = -100000
min_y = 100000
max_y = -100000
#finds the proper maximum/minimum
for city in list_of_cities:
if city.x < min_x:
min_x = city.x
if city.x > max_x:
max_x = city.x
if city.y < min_y:
min_y = city.y
if city.y > max_y:
max_y = city.y
# shifts the graph_x so the leftmost city starts at x=0, same for y.
for city in list_of_cities:
city.graph_x = (city.graph_x + (-1*min_x)+25)
city.graph_y = (city.graph_y + (-1*min_y)+25)
# resets the variables now we've made changes
min_x = 100000
max_x = -100000
min_y = 100000
max_y = -100000
#finds the proper maximum/minimum
for city in list_of_cities:
if city.graph_x < min_x:
min_x = city.graph_x
if city.graph_x > max_x:
max_x = city.graph_x
if city.graph_y < min_y:
min_y = city.graph_y
if city.graph_y > max_y:
max_y = city.graph_y
# if x is the longer dimension, set the stretch factor to 300 (px) / max_x. Else do it for y. This conserves aspect ratio.
if max_x > max_y:
stretch = 300 / max_x
else:
stretch = 300 / max_y
# stretch all the cities so that the city with the highest coordinates has both x and y < 300
for city in list_of_cities:
city.graph_x *= stretch
city.graph_y = 350 - (city.graph_y * stretch)
def update_canvas(self,the_canvas,the_route,color):
'''
Convenience method to update the canvases with the new routes
'''
# deletes all current items with tag 'path'
the_canvas.delete('path')
# loops through the route
for i in range(len(the_route.route)):
# similar to i+1 but will loop around at the end
next_i = i-len(the_route.route)+1
# creates the line from city to city
the_canvas.create_line(the_route.route[i].graph_x,
the_route.route[i].graph_y,
the_route.route[next_i].graph_x,
the_route.route[next_i].graph_y,
tags=("path"),
fill=color)
# Packs and updates the canvas
the_canvas.pack()
the_canvas.update_idletasks()
def read_csv(self):
with open(csv_name, 'rt') as f:
reader = csv.reader(f)
for row in reader:
new_city = City(row[0],float(row[1]),float(row[2]))
def GA_loop(self,n_generations,pop_size, graph=False):
'''
Main logic loop for the GA. Creates and manages populations, running variables etc.
'''
# takes the time to measure the elapsed time
start_time = time.time()
# Creates the population:
print("Creates the population:")
the_population = RoutePop(pop_size, True)
print ("Finished Creation of the population")
# the_population.rt_pop[0].route = [1,8,38,31,44,18,7,28,6,37,19,27,17,43,30,36,46,33,20,47,21,32,39,48,5,42,24,10,45,35,4,26,2,29,34,41,16,22,3,23,14,25,13,11,12,15,40,9]
# the_population.rt_pop[0].recalc_rt_len()
# the_population.get_fittest()
#checks to make sure there are no duplicate cities:
if the_population.fittest.is_valid_route() == False:
raise NameError('Multiple cities with same name. Check cities.')
return # if there are, raise a NameError and return
# gets the best length from the first population (no practical use, just out of interest to see improvements)
initial_length = the_population.fittest.length
# Creates a random route called best_route. It will store our overall best route.
best_route = Route()
if graph:
# Update the two canvases with the just-created routes:
self.update_canvas(self.canvas_current,the_population.fittest,'red')
self.update_canvas(self.canvas_best,best_route,'green')
# Main process loop (for number of generations)
for x in range(1,n_generations):
# Updates the current canvas every n generations (to avoid it lagging out, increase n)
if x % 8 == 0 and graph:
self.update_canvas(self.canvas_current,the_population.fittest,'red')
# Evolves the population:
the_population = GA().evolve_population(the_population)
# If we have found a new shorter route, save it to best_route
if the_population.fittest.length < best_route.length:
# set the route (copy.deepcopy because the_population.fittest is persistent in this loop so will cause reference bugs)
best_route = copy.deepcopy(the_population.fittest)
if graph:
# Update the second canvas because we have a new best route:
self.update_canvas(self.canvas_best,best_route,'green')
# update the status bar (bottom bar)
self.stat_tk_txt.set('Initial length {0:.2f} Best length = {1:.2f}'.format(initial_length,best_route.length))
self.status_label.pack()
self.status_label.update_idletasks()
# Prints info to the terminal:
self.clear_term()
print('Generation {0} of {1}'.format(x,n_generations))
print(' ')
print('Overall fittest has length {0:.2f}'.format(best_route.length))
print('and goes via:')
best_route.pr_cits_in_rt(True)
print(' ')
print('Current fittest has length {0:.2f}'.format(the_population.fittest.length))
print('And goes via:')
the_population.fittest.pr_cits_in_rt(True)
print(' ')
print('''The screen with the maps may become unresponsive if the population size is too large. It will refresh at the end.''')
if graph:
# sets the window title to the latest Generation:
self.window.wm_title("Generation {0}".format(x))
#take screenshot in given interval (standard 0 => no screenshot)
if self.screenInterval > 0:
geo = [int(g) for g in re.split(regex, self.window.geometry())]
if x % self.screenInterval == 0 or x == 1:
img = ImageGrab.grab(bbox=(geo[2]+7, geo[3], geo[0]+geo[2]+7, geo[1]+geo[3]+27))
img.save("screenshots/gen{0}.jpg".format(x))
if graph:
# sets the window title to the last generation
self.window.wm_title("Generation {0}".format(n_generations))
# updates the best route canvas for the last time:
self.update_canvas(self.canvas_best,best_route,'green')
#take final screenshot
if self.screenInterval > 0:
geo = [int(g) for g in re.split(regex, self.window.geometry())]
img = ImageGrab.grab(bbox=(geo[2]+7, geo[3], geo[0]+geo[2]+7, geo[1]+geo[3]+27))
img.save("screenshots/gen{0}.jpg".format(n_generations))
# takes the end time of the run:
end_time = time.time()
# Prints final output to terminal:
self.clear_term()
print('Finished evolving {0} generations.'.format(n_generations))
print("Elapsed time was {0:.1f} seconds.".format(end_time - start_time))
print(' ')
print('Initial best distance: {0:.2f}'.format(initial_length))
print('Final best distance: {0:.2f}'.format(best_route.length))
print('The best route went via:')
best_route.pr_cits_in_rt(print_route=True)
def window_loop(self, graph):
'''
Wraps the GA_loop() method and initiates the window on top of the logic.
window.mainloop() hogs the Thread, that's why the GA_loop is called as a callback
'''
# see http://stackoverflow.com/questions/459083/how-do-you-run-your-own-code-alongside-tkinters-event-loop
self.window.after(0,self.GA_loop(self.n_generations, self.pop_size, graph))
self.window.mainloop()
# Helper function for clearing terminal window
def clear_term(self):
os.system('cls' if os.name=='nt' else 'clear')
def random_cities():
i = City('i', 60, 200)
j = City('j', 180, 190)
k = City('k', 100, 180)
l = City('l', 140, 180)
m = City('m', 20, 160)
n = City('n', 100, 160)
o = City('o', 140, 140)
p = City('p', 40, 120)
q = City('q', 100, 120)
r = City('r', 180, 100)
s = City('s', 60, 80)
t = City('t', 120, 80)
u = City('u', 180, 60)
v = City('v', 20, 40)
w = City('w', 100, 40)
x = City('x', 200, 40)
a = City('a', 20, 20)
b = City('b', 60, 20)
c = City('c', 160, 20)
d = City('d', 68, 130)
e = City('e', 10, 10)
f = City('f', 75, 180)
g = City('g', 190, 190)
h = City('h', 200, 10)
# a1 = City('a1', 53, 99)
for city in list_of_cities:
city.calculate_distances()
######## create and run an application instance:
app = App(n_generations=k_n_generations,pop_size=k_population_size, graph=True, screenInterval=screenshotInterval)
if __name__ == '__main__':
"""Select only one function: random, specific or specific2"""
# specific_cities2()
#specific_cities()
random_cities()