forked from pytorch/serve
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscript_tokenizer_and_model.py
104 lines (80 loc) · 3.13 KB
/
script_tokenizer_and_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
"""
Combine tokenizer and XLM-RoBERTa model pretrained on SST-2 Binary text classification
"""
import argparse
from typing import Any
import torch
import torchtext.functional as F
import torchtext.transforms as T
from torch import nn
from torch.hub import load_state_dict_from_url
from torchtext.models import XLMR_BASE_ENCODER, RobertaClassificationHead
PADDING_IDX = 1
BOS_IDX = 0
EOS_IDX = 2
MAX_SEQ_LEN = 256
# Vocab file for the pretrained XLM-RoBERTa model
XLMR_VOCAB_PATH = r"https://download.pytorch.org/models/text/xlmr.vocab.pt"
# Model file for ther pretrained SentencePiece tokenizer
XLMR_SPM_MODEL_PATH = (
r"https://download.pytorch.org/models/text/xlmr.sentencepiece.bpe.model"
)
class TokenizerModelAdapter(nn.Module):
"""
TokenizerModelAdapter moves input onto device and adds batch dimension
"""
def __init__(self, padding_idx):
super().__init__()
self._padding_idx = padding_idx
self._dummy_param = nn.Parameter(torch.empty(0))
def forward(self, tokens: Any) -> torch.Tensor:
"""
Moves input onto device and adds batch dimension.
Args:
x (Any): Tokenizer output. As we script the combined model, we need to
hint the type of the input argument of the adapter module which TorchScript
identified as Any. Chosing a more restrictive type lets the scripting fail.
Returns:
(Tensor): On device text tensor with batch dimension
"""
tokens = F.to_tensor(tokens, padding_value=self._padding_idx).to(
self._dummy_param.device
)
# If a single sample is tokenized we need to add the batch dimension
if len(tokens.shape) < 2:
return tokens.unsqueeze(0)
return tokens
def main(args):
# Chain preprocessing steps as defined during training.
text_transform = T.Sequential(
T.SentencePieceTokenizer(XLMR_SPM_MODEL_PATH),
T.VocabTransform(load_state_dict_from_url(XLMR_VOCAB_PATH)),
T.Truncate(MAX_SEQ_LEN - 2),
T.AddToken(token=BOS_IDX, begin=True),
T.AddToken(token=EOS_IDX, begin=False),
)
NUM_CLASSES = 2
INPUT_DIM = 768
classifier_head = RobertaClassificationHead(
num_classes=NUM_CLASSES, input_dim=INPUT_DIM
)
model = XLMR_BASE_ENCODER.get_model(head=classifier_head)
# Load trained parameters and load them into the model
model.load_state_dict(torch.load(args.input_file, map_location=torch.device("cpu")))
# Chain the tokenizer, the adapter and the model
combi_model = T.Sequential(
text_transform,
TokenizerModelAdapter(PADDING_IDX),
model,
)
combi_model.eval()
# Make sure to move the model to CPU to avoid placement error during loading
combi_model.to(torch.device("cpu"))
combi_model_jit = torch.jit.script(combi_model)
torch.jit.save(combi_model_jit, args.output_file)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Combine tokenzier and model.")
parser.add_argument("input_file", type=str)
parser.add_argument("output_file", type=str)
args = parser.parse_args()
main(args)