Skip to content

Latest commit

 

History

History
75 lines (59 loc) · 1.59 KB

README.md

File metadata and controls

75 lines (59 loc) · 1.59 KB

HYU-AUE8088, Understanding and Utilizing Deep Learning

PA #1. Image Classification

Files

├── README.md
├── requirements.txt
├── src
│   ├── __init__.py
│   ├── config.py
│   ├── dataset.py
│   ├── metric.py
│   ├── network.py
│   └── util.py
├── test.py
└── train.py

0. Preparation

Setup virtual environment

  • Create python virtual environment
$ python3 -m venv venv/aue8088
$ source venv/aue8088/bin/activate
  • Check whether the virtual environment set properly : The result should end with venv/aue8088/bin/python.
$ which python
  • Install required packages
$ pip install -r requirements.txt

Wandb setup

  • Login
$ wandb login
  • Specify your Wandb entity
$ echo "export WANDB_ENTITY={YOUR_WANDB_ENTITY}" >> ~/.bashrc
$ source ~/.bashrc

1. [TODO] Evaluation metric

Finish MyAccuracy class (src/metric.py)

  • Please complete this function to measure accuracy of the prediction

Implement MyF1Score class (src/metric.py)

  • Please write MyF1Score class from scratch
    • Calculate per-class F-1 score in a one-vs-rest manner
  • Apply this new metric (hint: update src/network.py)

2. [TODO] Train models

  • Try different settings (src/config.py)
$ python train.py

3. [TODO] Toward state-of-the-art

  • How to improve performance more?
    • Find state-of-the-art method/model(paper) on TinyImageNet-200 dataset
    • Check difference between baseline and state-of-the-art
    • Apply missing stuff in the baseline