HYU-AUE8088, Understanding and Utilizing Deep Learning
PA #1. Image Classification
├── README.md
├── requirements.txt
├── src
│ ├── __init__.py
│ ├── config.py
│ ├── dataset.py
│ ├── metric.py
│ ├── network.py
│ └── util.py
├── test.py
└── train.py
Setup virtual environment
Create python virtual environment
$ python3 -m venv venv/aue8088
$ source venv/aue8088/bin/activate
Check whether the virtual environment set properly
: The result should end with venv/aue8088/bin/python
.
Install required packages
$ pip install -r requirements.txt
Specify your Wandb entity
$ echo " export WANDB_ENTITY={YOUR_WANDB_ENTITY}" >> ~ /.bashrc
$ source ~ /.bashrc
1. [TODO] Evaluation metric
Finish MyAccuracy
class (src/metric.py)
Please complete this function to measure accuracy of the prediction
Implement MyF1Score
class (src/metric.py)
Please write MyF1Score class from scratch
Calculate per-class F-1 score in a one-vs-rest manner
Apply this new metric (hint: update src/network.py)
Try different settings (src/config.py)
3. [TODO] Toward state-of-the-art
How to improve performance more?
Find state-of-the-art method/model(paper) on TinyImageNet-200 dataset
Check difference between baseline and state-of-the-art
Apply missing stuff in the baseline