-
Notifications
You must be signed in to change notification settings - Fork 2
/
image_helper.py
454 lines (410 loc) · 16.2 KB
/
image_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
import logging
import random
from collections import defaultdict
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.utils.data
from torchvision import datasets, transforms
from helper import Helper
from models.MnistNet import MnistNet
from models.resnet_cifar import ResNet18
logger = logging.getLogger("logger")
import copy
import os
import cv2
import yaml
import config
from config import device
os.environ["KMP_DUPLICATE_LIB_OK"] = "True"
import datetime
import json
from torchvision.utils import save_image
class ImageHelper(Helper):
def create_model(self):
"""
Create local and target model
"""
local_model = None
target_model = None
if self.params["type"] == config.TYPE_CIFAR:
local_model = ResNet18(
name="Local", created_time=self.params["current_time"]
)
target_model = ResNet18(
name="Target", created_time=self.params["current_time"]
)
elif self.params["type"] == config.TYPE_MNIST:
local_model = MnistNet(
name="Local", created_time=self.params["current_time"]
)
target_model = MnistNet(
name="Target", created_time=self.params["current_time"]
)
elif self.params["type"] == config.TYPE_FASHION_MNIST:
local_model = MnistNet(
name="Local", created_time=self.params["current_time"]
)
target_model = MnistNet(
name="Target", created_time=self.params["current_time"]
)
local_model = local_model.to(device)
target_model = target_model.to(device)
if self.params["resumed_model"]:
if torch.cuda.is_available():
loaded_params = torch.load(
f"{self.params['resumed_model_name']}",
map_location=lambda storage, loc: storage.cuda(device),
)
else:
loaded_params = torch.load(
f"{self.params['resumed_model_name']}", map_location="cpu"
)
target_model.load_state_dict(loaded_params["state_dict"])
self.start_epoch = loaded_params["epoch"] + 1
self.params["lr"] = loaded_params.get("lr", self.params["lr"])
logger.info(
f"Loaded parameters from saved model: LR is"
f" {self.params['lr']} and current epoch is {self.start_epoch}"
)
else:
self.start_epoch = 1
self.local_model = local_model
self.target_model = target_model
def build_classes_dict(self):
"""
Build a dictionary of classes and their corresponding indices in the dataset.
"""
cifar_classes = {}
for ind, x in enumerate(self.train_dataset): # for cifar: 50000
_, label = x
if label in cifar_classes:
cifar_classes[label].append(ind)
else:
cifar_classes[label] = [ind]
return cifar_classes
def sample_dirichlet_train_data(self, no_participants, alpha=0.9):
"""
Input: Number of participants and alpha (param for distribution)
Output: A list of indices denoting data in CIFAR training set.
Requires: cifar_classes, a preprocessed class-indice dictionary.
Sample Method: take a uniformly sampled 10-dimension vector as parameters for
dirichlet distribution to sample number of images in each class.
"""
cifar_classes = self.classes_dict
class_size = len(cifar_classes[0]) # for cifar: 5000
per_participant_list = defaultdict(list)
no_classes = len(cifar_classes.keys()) # for cifar: 10
image_nums = []
for n in range(no_classes):
image_num = []
random.shuffle(cifar_classes[n])
sampled_probabilities = class_size * np.random.dirichlet(
np.array(no_participants * [alpha])
)
for user in range(no_participants):
no_imgs = int(round(sampled_probabilities[user]))
sampled_list = cifar_classes[n][: min(len(cifar_classes[n]), no_imgs)]
image_num.append(len(sampled_list))
per_participant_list[user].extend(sampled_list)
cifar_classes[n] = cifar_classes[n][
min(len(cifar_classes[n]), no_imgs) :
]
image_nums.append(image_num)
return per_participant_list
def draw_dirichlet_plot(self, no_classes, no_participants, image_nums, alpha):
"""
Draw a bar plot for dirichlet distribution
"""
fig = plt.figure(figsize=(10, 5))
s = np.empty([no_classes, no_participants])
for i in range(0, len(image_nums)):
for j in range(0, len(image_nums[0])):
s[i][j] = image_nums[i][j]
s = s.transpose()
left = 0
y_labels = []
category_colors = plt.get_cmap("RdYlGn")(
np.linspace(0.15, 0.85, no_participants)
)
for k in range(no_classes):
y_labels.append("Label " + str(k))
for k in range(no_participants):
color = category_colors[k]
plt.barh(y_labels, s[k], left=left, label=str(k), color=color)
widths = s[k]
xcenters = left + widths / 2
r, g, b, _ = color
text_color = "white" if r * g * b < 0.5 else "darkgrey"
left += s[k]
plt.legend(ncol=20, loc="lower left", bbox_to_anchor=(0, 1), fontsize=4)
plt.xlabel("Number of Images", fontsize=16)
# plt.ylabel("Label 0 ~ 199", fontsize=16)
# plt.yticks([])
fig.tight_layout(pad=0.1)
# plt.ylabel("Label",fontsize='small')
fig.savefig(self.folder_path + "/Num_Img_Dirichlet_Alpha{}.pdf".format(alpha))
def poison_test_dataset(self):
"""
Poison the test dataset with target label
"""
logger.info("get poison test loader")
# delete the test data with target label
test_classes = {}
for ind, x in enumerate(self.test_dataset):
_, label = x
if label in test_classes:
test_classes[label].append(ind)
else:
test_classes[label] = [ind]
range_no_id = list(range(0, len(self.test_dataset)))
for image_ind in test_classes[self.params["poison_label_swap"]]:
if image_ind in range_no_id:
range_no_id.remove(image_ind)
poison_label_inds = test_classes[self.params["poison_label_swap"]]
return (
torch.utils.data.DataLoader(
self.test_dataset,
batch_size=self.params["batch_size"],
sampler=torch.utils.data.sampler.SubsetRandomSampler(range_no_id),
),
torch.utils.data.DataLoader(
self.test_dataset,
batch_size=self.params["batch_size"],
sampler=torch.utils.data.sampler.SubsetRandomSampler(poison_label_inds),
),
)
def load_data(self):
"""
Load data
"""
logger.info("Loading data")
dataPath = "./data"
if self.params["type"] == config.TYPE_CIFAR:
### data load
transform_train = transforms.Compose([transforms.ToTensor(),])
transform_test = transforms.Compose([transforms.ToTensor(),])
self.train_dataset = datasets.CIFAR10(
"/data/share/cifar10",
train=True,
download=True,
transform=transform_train,
)
self.test_dataset = datasets.CIFAR10(
"/data/share/cifar10", train=False, transform=transform_test
)
elif self.params["type"] == config.TYPE_MNIST:
self.train_dataset = datasets.MNIST(
"./data",
train=True,
download=True,
transform=transforms.Compose(
[
transforms.ToTensor(),
# transforms.Normalize((0.1307,), (0.3081,))
]
),
)
self.test_dataset = datasets.MNIST(
"./data",
train=False,
transform=transforms.Compose(
[
transforms.ToTensor(),
# transforms.Normalize((0.1307,), (0.3081,))
]
),
)
elif self.params["type"] == config.TYPE_FASHION_MNIST:
self.train_dataset = datasets.FashionMNIST(
"./data",
train=True,
download=True,
transform=transforms.Compose(
[
transforms.ToTensor(),
# transforms.Normalize((0.1307,), (0.3081,))
]
),
)
self.test_dataset = datasets.FashionMNIST(
"./data",
train=False,
transform=transforms.Compose(
[
transforms.ToTensor(),
# transforms.Normalize((0.1307,), (0.3081,))
]
),
)
self.classes_dict = self.build_classes_dict()
logger.info("build_classes_dict done")
if self.params["sampling_dirichlet"]:
## sample indices for participants using Dirichlet distribution
indices_per_participant = self.sample_dirichlet_train_data(
self.params["number_of_total_participants"], # 100
alpha=self.params["dirichlet_alpha"],
)
train_loaders = [
(pos, self.get_train(indices))
for pos, indices in indices_per_participant.items()
]
else:
## sample indices for participants that are equally
all_range = list(range(len(self.train_dataset)))
random.shuffle(all_range)
train_loaders = [
(pos, self.get_train_old(all_range, pos))
for pos in range(self.params["number_of_total_participants"])
]
logger.info("train loaders done")
self.train_data = train_loaders
self.test_data = self.get_test()
self.test_data_poison, self.test_targetlabel_data = self.poison_test_dataset()
self.advasarial_namelist = self.params["adversary_list"]
if self.params["is_random_namelist"] == False:
self.participants_list = self.params["participants_namelist"]
else:
self.participants_list = list(
range(self.params["number_of_total_participants"])
)
# random.shuffle(self.participants_list)
self.benign_namelist = list(
set(self.participants_list) - set(self.advasarial_namelist)
)
def get_train(self, indices):
"""
This method is used along with Dirichlet distribution
:param params:
:param indices:
:return:
"""
train_loader = torch.utils.data.DataLoader(
self.train_dataset,
batch_size=self.params["batch_size"],
sampler=torch.utils.data.sampler.SubsetRandomSampler(indices),
pin_memory=True,
num_workers=8,
)
return train_loader
def get_train_old(self, all_range, model_no):
"""
This method equally splits the dataset.
:param params:
:param all_range:
:param model_no:
:return:
"""
data_len = int(
len(self.train_dataset) / self.params["number_of_total_participants"]
)
sub_indices = all_range[model_no * data_len : (model_no + 1) * data_len]
train_loader = torch.utils.data.DataLoader(
self.train_dataset,
batch_size=self.params["batch_size"],
sampler=torch.utils.data.sampler.SubsetRandomSampler(sub_indices),
)
return train_loader
def get_test(self):
test_loader = torch.utils.data.DataLoader(
self.test_dataset, batch_size=self.params["test_batch_size"], shuffle=True
)
return test_loader
def get_batch(self, train_data, bptt, evaluation=False):
data, target = bptt
data = data.to(device)
target = target.to(device)
if evaluation:
data.requires_grad_(False)
target.requires_grad_(False)
return data, target
def get_poison_batch(self, bptt, adversarial_index=-1, evaluation=False):
images, targets = bptt
poison_count = 0
new_images = images
new_targets = targets
for index in range(0, len(images)):
if evaluation: # poison all data when testing
if new_targets[index] != self.params["poison_label_swap"]:
new_targets[index] = self.params["poison_label_swap"]
new_images[index] = self.add_pixel_pattern(
index, images[index], adversarial_index
)
poison_count += 1
else: # remove the target label data
del new_targets[index]
del new_images[index]
else: # poison part of data when training
if index < self.params["poisoning_per_batch"]:
new_targets[index] = self.params["poison_label_swap"]
new_images[index] = self.add_pixel_pattern(
index, images[index], adversarial_index
)
poison_count += 1
else:
new_images[index] = images[index]
new_targets[index] = targets[index]
new_images = new_images.to(device)
new_targets = new_targets.to(device).long()
if evaluation:
new_images.requires_grad_(False)
new_targets.requires_grad_(False)
return new_images, new_targets, poison_count
def add_pixel_pattern(self, index, ori_image, adversarial_index):
image = copy.deepcopy(ori_image)
poison_patterns = []
if adversarial_index == -1:
for i in range(0, self.params["trigger_num"]):
poison_patterns = (
poison_patterns + self.params[str(i) + "_poison_pattern"]
)
else:
poison_patterns = self.params[str(adversarial_index) + "_poison_pattern"]
if self.params["type"] == config.TYPE_CIFAR:
for i in range(0, len(poison_patterns)):
pos = poison_patterns[i]
image[0][pos[0]][pos[1]] = 1
image[1][pos[0]][pos[1]] = 1
image[2][pos[0]][pos[1]] = 1
elif self.params["type"] == config.TYPE_MNIST:
for i in range(0, len(poison_patterns)):
pos = poison_patterns[i]
image[0][pos[0]][pos[1]] = 1
elif self.params["type"] == config.TYPE_FASHION_MNIST:
for i in range(0, len(poison_patterns)):
pos = poison_patterns[i]
image[0][pos[0]][pos[1]] = 1
return image
if __name__ == "__main__":
np.random.seed(1024)
with open(f"./utils/cifar_params.yaml", "r") as f:
params_loaded = yaml.load(f)
current_time = datetime.datetime.now().strftime("%b.%d_%H.%M.%S")
helper = ImageHelper(
current_time=current_time,
params=params_loaded,
name=params_loaded.get("name", "mnist"),
)
helper.load_data()
pars = list(range(100))
# show the data distribution among all participants.
count_all = 0
for par in pars:
cifar_class_count = dict()
for i in range(10):
cifar_class_count[i] = 0
count = 0
_, data_iterator = helper.train_data[par]
for batch_id, batch in enumerate(data_iterator):
data, targets = batch
for t in targets:
cifar_class_count[t.item()] += 1
count += len(targets)
count_all += count
print(
par,
cifar_class_count,
count,
max(zip(cifar_class_count.values(), cifar_class_count.keys())),
)
print("avg", count_all * 1.0 / 100)