-
Notifications
You must be signed in to change notification settings - Fork 219
/
main.py
214 lines (176 loc) · 7.78 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
import sys
import argparse
import datetime
import time
import os.path as osp
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
import numpy as np
import torch
import torch.nn as nn
from torch.optim import lr_scheduler
import torch.backends.cudnn as cudnn
import datasets
import models
from utils import AverageMeter, Logger
from center_loss import CenterLoss
parser = argparse.ArgumentParser("Center Loss Example")
# dataset
parser.add_argument('-d', '--dataset', type=str, default='mnist', choices=['mnist'])
parser.add_argument('-j', '--workers', default=4, type=int,
help="number of data loading workers (default: 4)")
# optimization
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--lr-model', type=float, default=0.001, help="learning rate for model")
parser.add_argument('--lr-cent', type=float, default=0.5, help="learning rate for center loss")
parser.add_argument('--weight-cent', type=float, default=1, help="weight for center loss")
parser.add_argument('--max-epoch', type=int, default=100)
parser.add_argument('--stepsize', type=int, default=20)
parser.add_argument('--gamma', type=float, default=0.5, help="learning rate decay")
# model
parser.add_argument('--model', type=str, default='cnn')
# misc
parser.add_argument('--eval-freq', type=int, default=10)
parser.add_argument('--print-freq', type=int, default=50)
parser.add_argument('--gpu', type=str, default='0')
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--use-cpu', action='store_true')
parser.add_argument('--save-dir', type=str, default='log')
parser.add_argument('--plot', action='store_true', help="whether to plot features for every epoch")
args = parser.parse_args()
def main():
torch.manual_seed(args.seed)
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
use_gpu = torch.cuda.is_available()
if args.use_cpu: use_gpu = False
sys.stdout = Logger(osp.join(args.save_dir, 'log_' + args.dataset + '.txt'))
if use_gpu:
print("Currently using GPU: {}".format(args.gpu))
cudnn.benchmark = True
torch.cuda.manual_seed_all(args.seed)
else:
print("Currently using CPU")
print("Creating dataset: {}".format(args.dataset))
dataset = datasets.create(
name=args.dataset, batch_size=args.batch_size, use_gpu=use_gpu,
num_workers=args.workers,
)
trainloader, testloader = dataset.trainloader, dataset.testloader
print("Creating model: {}".format(args.model))
model = models.create(name=args.model, num_classes=dataset.num_classes)
if use_gpu:
model = nn.DataParallel(model).cuda()
criterion_xent = nn.CrossEntropyLoss()
criterion_cent = CenterLoss(num_classes=dataset.num_classes, feat_dim=2, use_gpu=use_gpu)
optimizer_model = torch.optim.SGD(model.parameters(), lr=args.lr_model, weight_decay=5e-04, momentum=0.9)
optimizer_centloss = torch.optim.SGD(criterion_cent.parameters(), lr=args.lr_cent)
if args.stepsize > 0:
scheduler = lr_scheduler.StepLR(optimizer_model, step_size=args.stepsize, gamma=args.gamma)
start_time = time.time()
for epoch in range(args.max_epoch):
print("==> Epoch {}/{}".format(epoch+1, args.max_epoch))
train(model, criterion_xent, criterion_cent,
optimizer_model, optimizer_centloss,
trainloader, use_gpu, dataset.num_classes, epoch)
if args.stepsize > 0: scheduler.step()
if args.eval_freq > 0 and (epoch+1) % args.eval_freq == 0 or (epoch+1) == args.max_epoch:
print("==> Test")
acc, err = test(model, testloader, use_gpu, dataset.num_classes, epoch)
print("Accuracy (%): {}\t Error rate (%): {}".format(acc, err))
elapsed = round(time.time() - start_time)
elapsed = str(datetime.timedelta(seconds=elapsed))
print("Finished. Total elapsed time (h:m:s): {}".format(elapsed))
def train(model, criterion_xent, criterion_cent,
optimizer_model, optimizer_centloss,
trainloader, use_gpu, num_classes, epoch):
model.train()
xent_losses = AverageMeter()
cent_losses = AverageMeter()
losses = AverageMeter()
if args.plot:
all_features, all_labels = [], []
for batch_idx, (data, labels) in enumerate(trainloader):
if use_gpu:
data, labels = data.cuda(), labels.cuda()
features, outputs = model(data)
loss_xent = criterion_xent(outputs, labels)
loss_cent = criterion_cent(features, labels)
loss_cent *= args.weight_cent
loss = loss_xent + loss_cent
optimizer_model.zero_grad()
optimizer_centloss.zero_grad()
loss.backward()
optimizer_model.step()
# by doing so, weight_cent would not impact on the learning of centers
for param in criterion_cent.parameters():
param.grad.data *= (1. / args.weight_cent)
optimizer_centloss.step()
losses.update(loss.item(), labels.size(0))
xent_losses.update(loss_xent.item(), labels.size(0))
cent_losses.update(loss_cent.item(), labels.size(0))
if args.plot:
if use_gpu:
all_features.append(features.data.cpu().numpy())
all_labels.append(labels.data.cpu().numpy())
else:
all_features.append(features.data.numpy())
all_labels.append(labels.data.numpy())
if (batch_idx+1) % args.print_freq == 0:
print("Batch {}/{}\t Loss {:.6f} ({:.6f}) XentLoss {:.6f} ({:.6f}) CenterLoss {:.6f} ({:.6f})" \
.format(batch_idx+1, len(trainloader), losses.val, losses.avg, xent_losses.val, xent_losses.avg, cent_losses.val, cent_losses.avg))
if args.plot:
all_features = np.concatenate(all_features, 0)
all_labels = np.concatenate(all_labels, 0)
plot_features(all_features, all_labels, num_classes, epoch, prefix='train')
def test(model, testloader, use_gpu, num_classes, epoch):
model.eval()
correct, total = 0, 0
if args.plot:
all_features, all_labels = [], []
with torch.no_grad():
for data, labels in testloader:
if use_gpu:
data, labels = data.cuda(), labels.cuda()
features, outputs = model(data)
predictions = outputs.data.max(1)[1]
total += labels.size(0)
correct += (predictions == labels.data).sum()
if args.plot:
if use_gpu:
all_features.append(features.data.cpu().numpy())
all_labels.append(labels.data.cpu().numpy())
else:
all_features.append(features.data.numpy())
all_labels.append(labels.data.numpy())
if args.plot:
all_features = np.concatenate(all_features, 0)
all_labels = np.concatenate(all_labels, 0)
plot_features(all_features, all_labels, num_classes, epoch, prefix='test')
acc = correct * 100. / total
err = 100. - acc
return acc, err
def plot_features(features, labels, num_classes, epoch, prefix):
"""Plot features on 2D plane.
Args:
features: (num_instances, num_features).
labels: (num_instances).
"""
colors = ['C0', 'C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9']
for label_idx in range(num_classes):
plt.scatter(
features[labels==label_idx, 0],
features[labels==label_idx, 1],
c=colors[label_idx],
s=1,
)
plt.legend(['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'], loc='upper right')
dirname = osp.join(args.save_dir, prefix)
if not osp.exists(dirname):
os.mkdir(dirname)
save_name = osp.join(dirname, 'epoch_' + str(epoch+1) + '.png')
plt.savefig(save_name, bbox_inches='tight')
plt.close()
if __name__ == '__main__':
main()