From e295bf992518309092bfc12d46d6a72fa208dd15 Mon Sep 17 00:00:00 2001 From: hdieckhaus Date: Thu, 12 Sep 2024 13:25:30 -0400 Subject: [PATCH] Fixed import conflict from deprecated biotite function needed by ESM --- stab_ESM_IF.ipynb | 118 +++++++++++++++++++++++----------------------- 1 file changed, 59 insertions(+), 59 deletions(-) diff --git a/stab_ESM_IF.ipynb b/stab_ESM_IF.ipynb index d4b6620..6f06892 100644 --- a/stab_ESM_IF.ipynb +++ b/stab_ESM_IF.ipynb @@ -1,23 +1,10 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "provenance": [], - "gpuType": "T4" - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - }, - "accelerator": "GPU" - }, "cells": [ { "cell_type": "markdown", + "metadata": { + "id": "AcjxZ9mXikrK" + }, "source": [ "# Absolute folding stabiity prediction via generative models\n", "Colaboratory implementation of : **Cagiada M., Ovchinnikov S. & Lindorff-Larsen K.** - [Predicting absolute protein folding stability using generative models\n", @@ -31,13 +18,13 @@ "\n", "where $\\mathscr{L}_i^{WT}$ is the amino acid likelihood extracted from ESM-IF for the wild-type amino acid at position i, to evaluate the absolute stability ($\\Delta G_{f-u}$) for a specific protein folding.\n", "\n" - ], - "metadata": { - "id": "AcjxZ9mXikrK" - } + ] }, { "cell_type": "markdown", + "metadata": { + "id": "a4dANSUAinaS" + }, "source": [ "Additional notes:\n", "\n", @@ -60,10 +47,7 @@ "\n", "- An **alternative sequence** can be used in the input instead of the sequence extracted from the PDB file, **HOWEVER** it must be the same length as the original sequence.\n", "****" - ], - "metadata": { - "id": "a4dANSUAinaS" - } + ] }, { "cell_type": "code", @@ -117,7 +101,7 @@ " os.system(f\"pip install torch-spline-conv -f https://data.pyg.org/whl/torch-{TORCH}+{CUDA}.html\")\n", " os.system(f\"pip install torch-geometric\")\n", " os.system(f\"pip install biopython\")\n", - " os.system(f\"pip install biotite\")\n", + " os.system(f\"pip install biotite==0.41\")\n", "\n", " print(\"installing esmfold...\")\n", " # install esmfold\n", @@ -150,6 +134,12 @@ }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "cellView": "form", + "id": "lWXN38psLY3u" + }, + "outputs": [], "source": [ "#@title PRELIMINARY OPERATIONS: Load EXTRA functions\n", "#@markdown Run the cell to load the required functions\n", @@ -201,16 +191,16 @@ "\n", " score = token_probs[0,idx, mt_encoded]\n", " return score.item()" - ], - "metadata": { - "id": "lWXN38psLY3u", - "cellView": "form" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "cellView": "form", + "id": "fbmpNhrvbKil" + }, + "outputs": [], "source": [ "#@title DATA UPLOADING\n", "#@markdown Fill in the fields and run the cell to set up the job name, import the structure, select the chain and upload an alternative sequence (not mandatory).\n", @@ -264,16 +254,16 @@ "\n", "print('... Target sequence:', sequence_structure)\n", "#@markdown ****" - ], - "metadata": { - "id": "fbmpNhrvbKil", - "cellView": "form" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "cellView": "form", + "id": "ocOnty1TP9Ec" + }, + "outputs": [], "source": [ "#@title MODEL RUN\n", "#@markdown Run this cell to evaluate the ΔG for the selected structure and sequence\n", @@ -303,31 +293,28 @@ " os.rename(f\"inputs/query_protein.pdb\",f\"outputs/{output_name_pdb}\")\n", "except:\n", " print('!!!! Data not saved, please re-upload the structure by running the uploading cell')\n" - ], - "metadata": { - "id": "ocOnty1TP9Ec", - "cellView": "form" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "cellView": "form", + "id": "HdIPxqSE6zWi" + }, + "outputs": [], "source": [ "#@title DOWNLOAD RESULTS \n", "#@markdown **N.B:** This will download **ALL** the predictions produced during the current session as zip file\n", "os.system( \"zip -r {} {}\".format( f\"dG_runs.zip\" , f\"outputs\" ) )\n", "files.download(f\"dG_runs.zip\")\n" - ], - "metadata": { - "id": "HdIPxqSE6zWi", - "cellView": "form" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "markdown", + "metadata": { + "id": "0NULd4ycW4dw" + }, "source": [ "EXTRA \n", "\n", @@ -396,10 +383,23 @@ "citation here\n", "\n", "```\n" - ], - "metadata": { - "id": "0NULd4ycW4dw" - } + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" } - ] -} \ No newline at end of file + }, + "nbformat": 4, + "nbformat_minor": 0 +}