forked from AlanLuSun/High-quality-ellipse-detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ellipseDetectionByArcSupportLSs.m
606 lines (587 loc) · 32.3 KB
/
ellipseDetectionByArcSupportLSs.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
function [ellipses, L, posi] = ellipseDetectionByArcSupportLSs(I, Tac, Tr, specified_polarity)
%input:
% I: input image
% Tac: elliptic angular coverage (completeness degree)
% Tni: ratio of support inliers on an ellipse
%output:
% ellipses: N by 5. (center_x, center_y, a, b, phi)
% reference:
% 1、von Gioi R Grompone, Jeremie Jakubowicz, Jean-
% Michel Morel, and Gregory Randall, “Lsd: a fast line
% segment detector with a false detection control.,” IEEE
% transactions on pattern analysis and machine intelligence,
% vol. 32, no. 4, pp. 722–732, 2010.
angleCoverage = Tac;%default 165°
Tmin = Tr;%default 0.6
unit_dis_tolerance = 2; %max([2, 0.005 * min([size(I, 1), size(I, 2)])]);%内点距离的容忍差小于max(2,0.5%*minsize)
normal_tolerance = pi/9; %法线容忍角度20°= pi/9
t0 = clock;
if(size(I,3)>1)
I = rgb2gray(I);
[candidates, edge, normals, lsimg] = generateEllipseCandidates(I, 2, specified_polarity);%1,sobel; 2,canny
else
[candidates, edge, normals, lsimg] = generateEllipseCandidates(I, 2, specified_polarity);%1,sobel; 2,canny
end
% figure; imshow(edge);
% return;
% subplot(1,2,1);imshow(edge);%show edge image
% subplot(1,2,2);imshow(lsimg);%show LS image
t1 = clock;
disp(['the time of generating ellipse candidates:',num2str(etime(t1,t0))]);
candidates = candidates';%ellipse candidates matrix Transposition
if(candidates(1) == 0)%表示没有找到候选圆
candidates = zeros(0, 5);
end
posi = candidates;
normals = normals';%norams matrix transposition
[y, x]=find(edge);%找到非0元素的行(y)、列(x)的索引
% ellipses = [];L=[];
% return;
[mylabels,labels, ellipses] = ellipseDetection(candidates ,[x, y], normals, unit_dis_tolerance, normal_tolerance, Tmin, angleCoverage, I);%后四个参数 0.5% 20° 0.6 180°
disp('-----------------------------------------------------------');
disp(['running time:',num2str(etime(clock,t0)),'s']);
% labels
% size(labels)
% size(y)
warning('on', 'all');
L = zeros(size(I, 1), size(I, 2));%创建与输入图像I一样大小的0矩阵L
L(sub2ind(size(L), y, x)) = mylabels;%labels,长度等于edge_pixel_n x 1,如果第i个边缘点用于识别了第j个圆,则该行标记为j,否则为0。大小 edge_pixel_n x 1;现在转化存到图像中,在图像中标记
% figure;imshow(L==2);%LLL
% imwrite((L==2),'D:\Graduate Design\画图\edge_result.jpg');
end
%% ================================================================================================================================
%函数1
%输入
%candidates: ncandidates x 5
%points: 边缘像素点的坐标(x,y),nx2,n为总共的边缘点数
%lineLabels: 对相应的坐标(xi,yi)标记,对应靠近相应的线段,nx1,未标记则为0
%lines: 线段参数,-B,A,xmid,ymid,其中(xmid,ymid)对应相应的线段中点,mx4,m为总共m条线段
%输出
%labels: 长度等于n x 1,如果第i个边缘点用于识别了第j个圆,则该行标记为j,否则为0。大小 n x 1
%C: 识别出来的对称中心,长半轴,短半轴,和倾角,每一行格式是(x,y,a,b,phi)
function [mylabels,labels, ellipses] = ellipseDetection(candidates, points, normals, distance_tolerance, normal_tolerance, Tmin, angleCoverage, E)
labels = zeros(size(points, 1), 1);
mylabels = zeros(size(points, 1), 1);%测试
ellipses = zeros(0, 5);
%% 对于显著性很大的候选椭圆,且满足极其严格要求,直接检测出来,SE(salient ellipses);同时对~SE按照goodness进行pseudo order
goodness = zeros(size(candidates, 1), 1);%初始化时为0,当检测到显著椭圆时直接提取,相应位置的goodness(i) = -1标记。
for i = 1 : size(candidates,1)
%ellipse circumference is approximate pi * (1.5*sum(ellipseAxes)-sqrt(ellipseAxes(1)*ellipseAxes(2))
ellipseCenter = candidates(i, 1 : 2);
ellipseAxes = candidates(i, 3:4);
tbins = min( [ 180, floor( pi * (1.5*sum(ellipseAxes)-sqrt(ellipseAxes(1)*ellipseAxes(2)) ) * Tmin ) ] );%选分区
%ellipse_normals = computePointAngle(candidates(i,:),points);
%inliers = find( labels == 0 & dRosin_square(candidates(i,:),points) <= 1 ); % +-1个像素内找支持内点
%加速计算,只挑出椭圆外接矩形内的边缘点(椭圆中的长轴a>b),s_dx存储的是相对points的索引
s_dx = find( points(:,1) >= (ellipseCenter(1)-ellipseAxes(1)-1) & points(:,1) <= (ellipseCenter(1)+ellipseAxes(1)+1) & points(:,2) >= (ellipseCenter(2)-ellipseAxes(1)-1) & points(:,2) <= (ellipseCenter(2)+ellipseAxes(1)+1));
inliers = s_dx(dRosin_square(candidates(i,:),points(s_dx,:)) <= 1);
ellipse_normals = computePointAngle(candidates(i,:),points(inliers,:));
p_dot_temp = dot(normals(inliers,:), ellipse_normals, 2); %加速后ellipse_normals(inliers,:)改为加速后ellipse_normals
p_cnt = sum(p_dot_temp>0);%无奈之举,做一次极性统计,当改为C代码时注意拟合圆时内点极性的选取问题
if(p_cnt > size(inliers,1)*0.5)
%极性相异,也就是内黑外白
%ellipse_polarity = -1;
inliers = inliers(p_dot_temp>0 & p_dot_temp >= 0.923879532511287 );%cos(pi/8) = 0.923879532511287, 夹角小于22.5°
else
%极性相同,也就是内白外黑
%ellipse_polarity = 1;
inliers = inliers(p_dot_temp<0 & (-p_dot_temp) >= 0.923879532511287 );
end
inliers = inliers(takeInliers(points(inliers, :), ellipseCenter, tbins));
support_inliers_ratio = length(inliers)/floor( pi * (1.5*sum(ellipseAxes)-sqrt(ellipseAxes(1)*ellipseAxes(2)) ));
completeness_ratio = calcuCompleteness(points(inliers,:),ellipseCenter,tbins)/360;
goodness(i) = sqrt(support_inliers_ratio*completeness_ratio); %goodness = sqrt(r_i * r_c)
%{
if( support_inliers_ratio >= Tmin && completeness_ratio >= 0.75 ) %300/360 = 0.833333333333333 and ratio great than Tmin
goodness(i) = -1;
if (size(ellipses, 1) > 0)
s_flag = false;
for j = 1 : size(ellipses, 1)
%新识别出来的圆不能够与之前识别出来的圆重复,pi*0.1 = 0.314159265358979
if (sqrt((ellipses(j, 1) - candidates(i, 1)) .^ 2 + (ellipses(j, 2) - candidates(i, 2)) .^ 2) <= distance_tolerance ...
&& sqrt((ellipses(j, 3) - candidates(i, 3)) .^ 2 + (ellipses(j, 4) - candidates(i, 4)) .^ 2 ) <= distance_tolerance ...
&& abs( ellipses(j, 5) - candidates(i, 5) ) <= 0.314159265358979) %pi/10 = 18°
s_flag = true;
labels(inliers) = j;%如果重复了,就把该标签转移到之前的圆上面。
break;%打破内循环,继续下一个外循环
end
end
if (~s_flag)%如果不重复,则加入到识别的圆(circles)中
labels(inliers) = size(ellipses, 1) + 1;
ellipses = [ellipses; candidates(i, :)];
%drawEllipses(candidates(i, :)',E);
end
else
labels(inliers) = size(ellipses, 1) + 1;
ellipses = [ellipses; candidates(i, :)];%标记
%drawEllipses(candidates(i, :)',E);
end
else
goodness(i) = sqrt(support_inliers_ratio*completeness_ratio); %goodness = sqrt(r_i * r_c)
end
%}
end
%drawEllipses(ellipses',E);ellipses
[goodness_descending, goodness_index] = sort(goodness,1,'descend');%here we can use pseudo order to speed up
candidates = candidates(goodness_index(goodness_descending>0),:);
%%
% t1 = clock;
angles = [300; 210; 150; 90];%角度从大到小验证,列向量
angles(angles < angleCoverage) = [];%只保留大于angleCoverage的部分
if (isempty(angles) || angles(end) ~= angleCoverage)%如果angels为空了,或者angles最小的~=angleCoverage,则把angleCoverage加入进来
angles = [angles; angleCoverage];
end
% disp('开始对一组圆的完整角度进行验证,开始angleLoop,在每次循环里设置一个angleCoverage,对候选圆进行验证,包括圆周上的内点的连通性分析,数量分析,完整度分析,从而找到有效圆,同时剔除无效圆');
for angleLoop = 1 : length(angles)
idx = find(labels == 0);%labels大小为边缘像素总数edge_nx1,初始化时labels全为0,找到labels中等于0的索引
if (length(idx) < 2 * pi * (6 * distance_tolerance) * Tmin)%当idx数量小于一定值时
break;
end
[L2, L, C, validCandidates] = subEllipseDetection( candidates, points(idx, :), normals(idx, :), distance_tolerance, normal_tolerance, Tmin, angles(angleLoop), E, angleLoop);
candidates = candidates(validCandidates, :);%根据logical向量validCandidates进行剔除掉不成立的圆,剩下的圆继续用于下一个angleloop验证
% size(candidates)
% disp(angleLoop)
if (size(C, 1) > 0)
for i = 1 : size(C, 1)
flag = false;
for j = 1 : size(ellipses, 1)
%新识别出来的圆不能够与之前识别出来的圆重复,pi*0.1 = 0.314159265358979
if (sqrt((C(i, 1) - ellipses(j, 1)) .^ 2 + (C(i, 2) - ellipses(j, 2)) .^ 2) <= distance_tolerance ...
&& sqrt((C(i, 3) - ellipses(j, 3)) .^ 2 + (C(i, 4) - ellipses(j, 4)) .^ 2) <= distance_tolerance ...
&& abs(C(i, 5) - ellipses(j, 5)) <= 0.314159265358979) %pi/10 = 18°
flag = true;
labels(idx(L == i)) = j;%如果重复了,就把该标签转移到之前的圆上面。注意注意:idx存的是索引,label是标记该边缘点用在了第j个圆上,idx、labels都是一维类向量(n x 1),labels与边缘点points(n x 2)总数一样,而idx则不一定
%==================================================
mylabels(idx(L2 == i)) = j;
%==================================================
break;%打破内循环,继续下一个外循环
end
end
if (~flag)%如果不重复,则加入到识别的圆(circles)中
labels(idx(L == i)) = size(ellipses, 1) + 1;
%=================================================================
%%显示拟合出圆时所用的内点 my code
mylabels(idx(L2 == i)) = size(ellipses, 1) + 1;%测试
%=================================================================
ellipses = [ellipses; C(i, :)];
end
end
end
end
% t2 = clock;
% disp(['聚类和验证时间:',num2str(etime(t2,t1))]);
end
%% ================================================================================================================================
%函数2
%输入
%list: 聚类候选的圆心和半径组合,(x,y,a,b,r),大小 candidate_n x 5.
%points: 边缘像素点的坐标(x,y),nx2,n为总共的边缘点数
%normals: 每一个边缘点对应的梯度向量,normals大小为nx2,格式为(xi,yi)
%输出
%labels: 如果第i个边缘点用于检测到了第j个圆,则labels第i行赋值为j,否则为0.长度与points一致,n x 1
%circles: 此次检测到的圆,(x,y,z),若检测到detectnum个,则大小为detectnum x 3
%validCandidates: list的候选圆中,如果第i个圆被检测到了或者不满足圆条件(圆周上内点数量不足),则第i个位置为false(初始化时为true),这样在下一个angleloop轮次验证时可以剔除掉,不必要重复验证。
% validCandidates的大小为 candidate_n x 1.
function [mylabels,labels, ellipses, validCandidates] = subEllipseDetection( list, points, normals, distance_tolerance, normal_tolerance, Tmin, angleCoverage,E,angleLoop)
labels = zeros(size(points, 1), 1);%边缘像素点的总数量n,n x 1
mylabels = zeros(size(points, 1), 1);%测试
ellipses = zeros(0, 5);
ellipse_polarity = 0; %椭圆极性
max_dis = max(points) - min(points);
maxSemiMajor = max(max_dis);%最大的可能半径(此处可改为/2)
maxSemiMinor = min(max_dis);
distance_tolerance_square = distance_tolerance*distance_tolerance;
validCandidates = true(size(list, 1), 1);%logical向量,大小 candidate_n x 1
convergence = list;%候选椭圆副本
for i = 1 : size(list, 1)
ellipseCenter = list(i, 1 : 2);
ellipseAxes = list(i, 3:4);
ellipsePhi = list(i,5);
%ellipse circumference is approximate pi * (1.5*sum(ellipseAxes)-sqrt(ellipseAxes(1)*ellipseAxes(2))
tbins = min( [ 180, floor( pi * (1.5*sum(ellipseAxes)-sqrt(ellipseAxes(1)*ellipseAxes(2)) ) * Tmin ) ] );%选分区
%找到这个圆list(i,:)的圆周上的内点,find里面判断的结果为logical向量,是内点则对应在points中的行对应位置为1,否则为0,大小为n x 1
%通过find找出非0元素的索引后,inliers则是保存着相应为内点的行的值,长度 inlier_n x 1
%下行代码有问题,未进行极性分析,导致邻近的2 * distance_tolerance的极性相反的错误内点被纳入,从而拟合错误.
% inliers = find(labels == 0 & abs(sqrt((points(:, 1) - circleCenter(1)) .^ 2 + (points(:, 2) - circleCenter(2)) .^ 2) - circleRadius) <= 2 * distance_tolerance & radtodeg(real(acos(abs(dot(normals, circle_normals, 2))))) <= normal_tolerance);
%===============================================================================================================================================================
%上行代码改为如下代码,my code
% size(labels)
% size(dRosin_square(list(i,:),points) )
% ppp = (dRosin_square(list(i,:),points) <= 4*distance_tolerance_square)
% if( i == 11 && angleCoverage == 165)
% drawEllipses(list(i,:)',E);
% end
%此处非常重要,距离应该要比之前的更狭小的范围寻找内点
%ellipse_normals = computePointAngle(list(i,:),points);
%inliers = find(labels == 0 & (dRosin_square(list(i,:),points) <= distance_tolerance_square) ); % 2.25 * distance_tolerance_square , 4*distance_tolerance_square.
%加速计算,只挑出椭圆外接矩形内的边缘点(椭圆中的长轴a>b),i_dx存储的是相对在points中的索引.
i_dx = find( points(:,1) >= (ellipseCenter(1)-ellipseAxes(1)-distance_tolerance) & points(:,1) <= (ellipseCenter(1)+ellipseAxes(1)+distance_tolerance) & points(:,2) >= (ellipseCenter(2)-ellipseAxes(1)-distance_tolerance) & points(:,2) <= (ellipseCenter(2)+ellipseAxes(1)+distance_tolerance));
inliers = i_dx(labels(i_dx) == 0 & (dRosin_square(list(i,:),points(i_dx,:)) <= distance_tolerance_square) );
ellipse_normals = computePointAngle(list(i,:),points(inliers,:));%ellipse_normals长度与inliers长度一致
% if( i == 11 && angleCoverage == 165)
% testim = zeros(size(E,1),size(E,2));
% testim(sub2ind(size(E),points(inliers,2),points(inliers,1))) = 1;
% figure;imshow(testim);
% end
p_dot_temp = dot(normals(inliers,:), ellipse_normals, 2);
p_cnt = sum(p_dot_temp>0);%无奈之举,做一次极性统计,当改为C代码时注意拟合圆时内点极性的选取问题
if(p_cnt > size(inliers,1)*0.5)
%极性相异,也就是内黑外白
ellipse_polarity = -1;
inliers = inliers(p_dot_temp>0 & p_dot_temp >= 0.923879532511287 );%cos(pi/8) = 0.923879532511287, 夹角小于22.5°
else
%极性相同,也就是内白外黑
ellipse_polarity = 1;
inliers = inliers(p_dot_temp<0 & (-p_dot_temp) >= 0.923879532511287 );
end
% if( i == 11 && angleCoverage == 165)
% testim = zeros(size(E,1),size(E,2));
% testim(sub2ind(size(E),points(inliers,2),points(inliers,1))) = 1;
% figure;imshow(testim);
% end
inliers2 = inliers;
inliers3 = 0;
%=================================================================================================================================================================
%连通域分析,inliers为存的是在边缘点的行下标
% size(points)
% size(inliers)
% size(points(inliers, :))
% size(takeInliers(points(inliers, :), circleCenter, tbins))
%连通域分析,得到有效的内点,内点提纯,也就是inliers中进一步产出有效的inliers,个数会减少,大小inlier_n2 x 1。注意注意:inliers中存的是在points中的行下标
inliers = inliers(takeInliers(points(inliers, :), ellipseCenter, tbins));
% if( i == 11 && angleCoverage == 165)
% testim = zeros(size(E,1),size(E,2));
% testim(sub2ind(size(E),points(inliers,2),points(inliers,1))) = 1;
% figure;imshow(testim);
% end
[new_ellipse,new_info] = fitEllipse(points(inliers,1),points(inliers,2));
% if( i == 11 && angleCoverage == 165)
% drawEllipses(new_ellipse',E);
% end
% if angleLoop == 2 %mycode
% dispimg = zeros(size(E,1),size(E,2),3);
% dispimg(:,:,1) = E.*255;%边缘提取出来的是0-1图像
% dispimg(:,:,2) = E.*255;
% dispimg(:,:,3) = E.*255;
% for i = 1:length(inliers)
% dispimg(points(inliers(i),2),points(inliers(i),1),:)=[0 0 255];
% end
% dispimg = drawCircle(dispimg,[newa newb],newr);
% figure;
% imshow(uint8(dispimg));
% end
if (new_info == 1)%如果是用最小二乘法拟合的而得出的结果
%新对称中心和老对称中心的距离小于4*distance_tolerance, (a,b)的距离也是小于4*distance_tolerance,倾角phi小于0.314159265358979 = 0.1pi = 18°,因为新拟合出来的不能和原来的椭圆中心差很多,
if ( (((new_ellipse(1) - ellipseCenter(1))^2 + (new_ellipse(2) - ellipseCenter(2))^2 ) <= 16 * distance_tolerance_square) ...
&& (((new_ellipse(3) - ellipseAxes(1))^2 + (new_ellipse(4) - ellipseAxes(2))^2 ) <= 16 * distance_tolerance_square) ...
&& (abs(new_ellipse(5) - ellipsePhi) <= 0.314159265358979) )
ellipse_normals = computePointAngle(new_ellipse,points);
%重新做一次找内点,连通性分析的内点提纯,这次的新的内点会用于后面的完整度分析
%newinliers = find( (labels == 0) & (dRosin_square(new_ellipse,points) <= distance_tolerance_square) ...
% & ((dot(normals, ellipse_normals, 2)*(-ellipse_polarity)) >= 0.923879532511287) ); % (2*distance_tolerance)^2, cos(pi/8) = 0.923879532511287, 夹角小于22.5°
%加速计算,只挑出椭圆外接矩形内的边缘点(椭圆中的长轴a>b),i_dx存储的是相对在points中的索引
i_dx = find( points(:,1) >= (new_ellipse(1)-new_ellipse(3)-distance_tolerance) & points(:,1) <= (new_ellipse(1)+new_ellipse(3)+distance_tolerance) & points(:,2) >= (new_ellipse(2)-new_ellipse(3)-distance_tolerance) & points(:,2) <= (new_ellipse(2)+new_ellipse(3)+distance_tolerance));
ellipse_normals = computePointAngle(new_ellipse,points(i_dx,:));%ellipse_normals长度与i_dx长度一致
newinliers = i_dx(labels(i_dx) == 0 & (dRosin_square(new_ellipse,points(i_dx,:)) <= distance_tolerance_square & ((dot(normals(i_dx,:), ellipse_normals, 2)*(-ellipse_polarity)) >= 0.923879532511287) ) );
newinliers = newinliers(takeInliers(points(newinliers, :), new_ellipse(1:2), tbins));
if (length(newinliers) >= length(inliers))
%a = newa; b = newb; r = newr; cnd = newcnd;
inliers = newinliers;
inliers3 = newinliers;%my code,just test
%======================================================================
%二次拟合
%[newa, newb, newr, newcnd] = fitCircle(points(inliers, :));
[new_new_ellipse,new_new_info] = fitEllipse(points(inliers,1),points(inliers,2));
if(new_new_info == 1)
new_ellipse = new_new_ellipse;
end
%=======================================================================
end
end
else
new_ellipse = list(i,:); %candidates
end
%内点数量大于圆周上的一定比例,Tmin为比例阈值
% length(inliers)
% floor( pi * (1.5*sum(new_ellipse(3:4))-sqrt(new_ellipse(3)*new_ellipse(4))) * Tmin )
if (length(inliers) >= floor( pi * (1.5*sum(new_ellipse(3:4))-sqrt(new_ellipse(3)*new_ellipse(4))) * Tmin ))
convergence(i, :) = new_ellipse;
%与之前的圆心和半径参数几乎一致,重复了,因此把这个圆淘汰(排在最开头的和它重复的圆不一定会被淘汰)
if (any( (sqrt(sum((convergence(1 : i - 1, 1 : 2) - repmat(new_ellipse(1:2), i - 1, 1)) .^ 2, 2)) <= distance_tolerance) ...
& (sqrt(sum((convergence(1 : i - 1, 3 : 4) - repmat(new_ellipse(3:4), i - 1, 1)) .^ 2, 2)) <= distance_tolerance) ...
& (abs(convergence(1 : i - 1, 5) - repmat(new_ellipse(5), i - 1, 1)) <= 0.314159265358979) ))
validCandidates(i) = false;
end
%如果内点在圆周上满足angleCoverage的完整度
%completeOrNot = isComplete(points(inliers, :), new_ellipse(1:2), tbins, angleCoverage);
completeOrNot = calcuCompleteness(points(inliers,:),new_ellipse(1:2),tbins) >= angleCoverage;
if (new_info == 1 && new_ellipse(3) < maxSemiMajor && new_ellipse(4) < maxSemiMinor && completeOrNot )
%且满足和其它圆参数大于distance_tolerance,也就是指和其它圆是不同的
if (all( (sqrt(sum((ellipses(:, 1 : 2) - repmat(new_ellipse(1:2), size(ellipses, 1), 1)) .^ 2, 2)) > distance_tolerance) ...
| (sqrt(sum((ellipses(:, 3 : 4) - repmat(new_ellipse(3:4), size(ellipses, 1), 1)) .^ 2, 2)) > distance_tolerance) ...
| (abs(ellipses(:, 5) - repmat(new_ellipse(5), size(ellipses, 1), 1)) >= 0.314159265358979 ) )) %0.1 * pi = 0.314159265358979 = 18°
%size(inliers)
%line_normal = pca(points(inliers, :));%得到2x2的pca变换矩阵,因此第二列便是由内点统计出的梯度
%line_normal = line_normal(:, 2)';%取出第二列并且变为1 x 2 的行向量
%line_point = mean(points(inliers, :));%内点取平均
%防止数据点过于集中
%if (sum(abs(dot(points(inliers, :) - repmat(line_point, length(inliers), 1), repmat(line_normal, length(inliers), 1), 2)) <= distance_tolerance & radtodeg(real(acos(abs(dot(normals(inliers, :), repmat(line_normal, length(inliers), 1), 2))))) <= normal_tolerance) / length(inliers) < 0.8)
labels(inliers) = size(ellipses, 1) + 1;%标记,这些内点已经用过了,构成了新检测到圆周
%==================================================================
if(all(inliers3) == 1)
mylabels(inliers3) = size(ellipses,1) + 1; %显示拟合出圆时所用的内点 SSS
end
%==================================================================
ellipses = [ellipses; new_ellipse];%将该圆参数加入进去
validCandidates(i) = false;%第i个候选圆检测完毕
%disp([angleCoverage,i]);
%drawEllipses(new_ellipse',E);
%end
end
end
else
validCandidates(i) = false;%其它情况,淘汰该候选圆
end
end %for
end%fun
%% ================================================================================================================================
%函数4
%圆的最小二乘法拟合(此处可以改用快速圆拟合方法)
%输入:
%points: 联通性分析后的提纯后的内点,设大小为 fpn x 2,格式(xi,yi)
%输出:
%a :拟合后的圆心横坐标x
%b :拟合后的圆心纵坐标y
%c :拟合后的圆心半径r
%cnd :1表示数据代入方程后是奇异的,直接用平均值估计;0表示数据是用最小二乘法拟合的
function [a, b, r, cnd] = fitCircle(points)
%{
A = [sum(points(:, 1)), sum(points(:, 2)), size(points, 1); sum(points(:, 1) .* points(:, 2)), sum(points(:, 2) .* points(:, 2)), sum(points(:, 2)); sum(points(:, 1) .* points(:, 1)), sum(points(:, 1) .* points(:, 2)), sum(points(:, 1))];
%用最小二乘法时,A'A正则矩阵如果接近0,则意味着方程组线性,求平均值即可
if (abs(det(A)) < 1e-9)
cnd = 1;
a = mean(points(:, 1));
b = mean(points(:, 2));
r = min(max(points) - min(points));
return;
end
cnd = 0;
B = [-sum(points(:, 1) .* points(:, 1) + points(:, 2) .* points(:, 2)); -sum(points(:, 1) .* points(:, 1) .* points(:, 2) + points(:, 2) .* points(:, 2) .* points(:, 2)); -sum(points(:, 1) .* points(:, 1) .* points(:, 1) + points(:, 1) .* points(:, 2) .* points(:, 2))];
t = A \ B;
a = -0.5 * t(1);
b = -0.5 * t(2);
r = sqrt((t(1) .^ 2 + t(2) .^ 2) / 4 - t(3));
%}
A = [sum(points(:, 1) .* points(:, 1)),sum(points(:, 1) .* points(:, 2)),sum(points(:, 1)); sum(points(:, 1) .* points(:, 2)),sum(points(:, 2) .* points(:, 2)),sum(points(:, 2)); sum(points(:, 1)),sum(points(:, 2)),size(points, 1)];
%用最小二乘法时,A'A正则矩阵如果接近0,则意味着方程组线性,求平均值即可
if (abs(det(A)) < 1e-9)
cnd = 1;
a = mean(points(:, 1));
b = mean(points(:, 2));
r = min(max(points) - min(points));
return;
end
cnd = 0;
B = [sum(-points(:, 1) .* points(:, 1) .* points(:, 1) - points(:, 1) .* points(:, 2) .* points(:, 2));sum(-points(:, 1) .* points(:, 1) .* points(:, 2) - points(:, 2) .* points(:, 2) .* points(:, 2)); sum(-points(:, 1) .* points(:, 1) - points(:, 2) .* points(:, 2))];
t = A \ B;
a = -0.5 * t(1);
b = -0.5 * t(2);
r = sqrt((t(1) .^ 2 + t(2) .^ 2) / 4 - t(3));
end
%% ================================================================================================================================
%函数5
%输入
%x : 连通性分析后,满足数量2piRT的提纯后的内点(x,y),将参与到完整度分析环节.num x 2
%center: 圆心(x,y) 1 x 2
%tbins :分区总数
%angleCoverage: 需要达到的圆完整度
%输出
%result: true or false,表示该圆完整与不完整
%longest_inliers:
function [result, longest_inliers] = isComplete(x, center, tbins, angleCoverage)
[theta, ~] = cart2pol(x(:, 1) - center(1), x(:, 2) - center(2));%theta为(-pi,pi)的角度,num x 1
tmin = -pi; tmax = pi;
tt = round((theta - tmin) / (tmax - tmin) * tbins + 0.5);%theta的第i个元素落在第j个bin,则tt第i行标记为j,大小num x 1
tt(tt < 1) = 1; tt(tt > tbins) = tbins;
h = histc(tt, 1 : tbins);
longest_run = 0;
start_idx = 1;
end_idx = 1;
while (start_idx <= tbins)
if (h(start_idx) > 0)%找到bin中vote第一个大于0的
end_idx = start_idx;
while (start_idx <= tbins && h(start_idx) > 0)%直到bin第一个小于0的
start_idx = start_idx + 1;
end
inliers = [end_idx, start_idx - 1];%此区间为连通区域
inliers = find(tt >= inliers(1) & tt <= inliers(2));%在tt中找到落在此区间的内点的索引
run = max(theta(inliers)) - min(theta(inliers));%角度差
if (longest_run < run)%此举是为了找到最大的完整的且连通的跨度
longest_run = run;
longest_inliers = inliers;
end
end
start_idx = start_idx + 1;
end
if (h(1) > 0 && h(tbins) > 0)%如果第一个bin和最后一个bin都大于0,有可能最大连通区域是头尾相连的这种情况
start_idx = 1;
while (start_idx < tbins && h(start_idx) > 0)%找到bin中vote第一个大于0的
start_idx = start_idx + 1;
end
end_idx = tbins;%end_idx直接从最尾部开始往回找
while (end_idx > 1 && end_idx > start_idx && h(end_idx) > 0)
end_idx = end_idx - 1;
end
inliers = [start_idx - 1, end_idx + 1];
run = max(theta(tt <= inliers(1)) + 2 * pi) - min(theta(tt >= inliers(2)));
inliers = find(tt <= inliers(1) | tt >= inliers(2));
if (longest_run < run)
longest_run = run;
longest_inliers = inliers;
end
end
%最大的连通的跨度大于了angleCoverage,或者虽然最大连通跨度小于,但完整度足够了
longest_run_deg = radtodeg(longest_run);
h_greatthanzero_num = sum(h>0);
result = longest_run_deg >= angleCoverage || h_greatthanzero_num * (360 / tbins) >= min([360, 1.2*angleCoverage]); %1.2 * angleCoverage
end
function [completeness] = calcuCompleteness(x, center, tbins)
[theta, ~] = cart2pol(x(:, 1) - center(1), x(:, 2) - center(2));%theta为(-pi,pi)的角度,num x 1
tmin = -pi; tmax = pi;
tt = round((theta - tmin) / (tmax - tmin) * tbins + 0.5);%theta的第i个元素落在第j个bin,则tt第i行标记为j,大小num x 1
tt(tt < 1) = 1; tt(tt > tbins) = tbins;
h = histc(tt, 1 : tbins);
h_greatthanzero_num = sum(h>0);
completeness = h_greatthanzero_num*(360 / tbins);
end
%% ================================================================================================================================
%函数6
%连通性分析,对圆周上的内点进行提纯
%输入
%x:椭圆周上的内点(x,y),设为inlier_n x 2
%center:一个椭圆的中心(x,y) 1x2
%tbins: 分区 = min( 180 , pi*(1.5*(a+b)-sqrt(a*b)) )
%输出
%idx:为与x一样长的,inlier_n x 1的logical向量,返回有效的满足一定连通长度的内点,对应位置有效则为1,否则为0
function idx = takeInliers(x, center, tbins)
[theta, ~] = cart2pol(x(:, 1) - center(1), x(:, 2) - center(2));%得到[-pi,pi]的方位角,等价于 theta = atan2(x(:, 2) - center(2) , x(:, 1) - center(1));
tmin = -pi; tmax = pi;
tt = round((theta - tmin) / (tmax - tmin) * tbins + 0.5);%将内点分区到[1 tbins]
tt(tt < 1) = 1; tt(tt > tbins) = tbins;
h = histc(tt, 1 : tbins);%h为直方图[1 tbins]的统计结果
mark = zeros(tbins, 1);
compSize = zeros(tbins, 1);
nComps = 0;
queue = zeros(tbins, 1);
du = [-1, 1];
for i = 1 : tbins
if (h(i) > 0 && mark(i) == 0)%如果落在第i个分区内的值大于0,且mark(i)为0
nComps = nComps + 1;
mark(i) = nComps;%标记第nComps个连通区域
front = 1; rear = 1;
queue(front) = i;%将该分区加入队列,并以此开始任务
while (front <= rear)
u = queue(front);
front = front + 1;
for j = 1 : 2
v = u + du(j);
if (v == 0)
v = tbins;
end
if (v > tbins)
v = 1;
end
if (mark(v) == 0 && h(v) > 0)
rear = rear + 1;
queue(rear) = v;
mark(v) = nComps;%标记第nComps个连通区域
end
end
end
compSize(nComps) = sum(ismember(tt, find(mark == nComps)));%得到构成连通域为nComps的内点数量
end
end
compSize(nComps + 1 : end) = [];
maxCompSize = max(compSize);
validComps = find(compSize >= maxCompSize * 0.1 & compSize > 10);%大于等于最大连通长度的0.1倍的连通区域是有效的
validBins = find(ismember(mark, validComps));%有效的分区
idx = ismember(tt, validBins);%有效的内点
end
%% compute the points' normals belong to an ellipse, the normals have been already normalized.
%param: [x0 y0 a b phi].
%points: [xi yi], n x 2
function [ellipse_normals] = computePointAngle(ellipse, points)
%convert [x0 y0 a b phi] to Ax^2+Bxy+Cy^2+Dx+Ey+F = 0
a_square = ellipse(3)^2;
b_square = ellipse(4)^2;
sin_phi = sin(ellipse(5));
cos_phi = cos(ellipse(5));
sin_square = sin_phi^2;
cos_square = cos_phi^2;
A = b_square*cos_square+a_square*sin_square;
B = (b_square-a_square)*sin_phi*cos_phi*2;
C = b_square*sin_square+a_square*cos_square;
D = -2*A*ellipse(1)-B*ellipse(2);
E = -2*C*ellipse(2)-B*ellipse(1);
% F = A*ellipse(1)^2+C*ellipse(2)^2+B*ellipse(1)*ellipse(2)-(ellipse(3)*ellipse(4)).^2;
% A = A/F;
% B = B/F;
% C = C/F;
% D = D/F;
% E = E/F;
% F = 1;
%calculate points' normals to ellipse
angles = atan2(C*points(:,2)+B/2*points(:,1)+E/2, A*points(:,1)+B/2*points(:,2)+D/2);
ellipse_normals = [cos(angles),sin(angles)];
end
%% param为[x0 y0 a b Phi],1 x 5 或者 5 x 1
%points为待计算rosin distance的点,每一行为(xi,yi),size是 n x 2
%dmin为输出估计距离的平方.
%调用注意,当a = b时,也就是椭圆退化成圆时,dmin会变成无穷大NAN,不能用此函数
function [dmin]= dRosin_square(param,points)
ae2 = param(3).*param(3);
be2 = param(4).*param(4);
x = points(:,1) - param(1);
y = points(:,2) - param(2);
xp = x*cos(-param(5))-y*sin(-param(5));
yp = x*sin(-param(5))+y*cos(-param(5));
fe2 = ae2-be2;
X = xp.*xp;
Y = yp.*yp;
delta = (X+Y+fe2).^2-4*fe2*X;
A = (X+Y+fe2-sqrt(delta))/2;
ah = sqrt(A);
bh2 = fe2-A;
term = A*be2+ae2*bh2;
xi = ah.*sqrt(ae2*(be2+bh2)./term);
yi = param(4)*sqrt(bh2.*(ae2-A)./term);
d = zeros(size(points,1),4);%n x 4
d(:,1) = (xp-xi).^2+(yp-yi).^2;
d(:,2) = (xp-xi).^2+(yp+yi).^2;
d(:,3) = (xp+xi).^2+(yp-yi).^2;
d(:,4) = (xp+xi).^2+(yp+yi).^2;
dmin = min(d,[],2); %返回距离的平方
%[dmin, ii] = min(d,[],2); %返回距离的平方
% for jj = 1:length(dmin)
% if(ii(jj) == 1)
% xi(jj) = xi(jj);
% yi(jj) = yi(jj);
% elseif (ii(jj) == 2)
% xi(jj) = xi(jj);
% yi(jj) = -yi(jj);
% elseif (ii(jj) == 3)
% xi(jj) = -xi(jj);
% yi(jj) = yi(jj);
% elseif(ii(jj) == 4)
% xi(jj) = -xi(jj);
% yi(jj) = -yi(jj);
% end
% end
%
% xi = xi*cos(param(5))-yi*sin(param(5));
% yi = xi*sin(param(5))+yi*cos(param(5));
%
% testim = zeros(300,300);
% testim(sub2ind([300 300],uint16(yi+param(2)),uint16(xi+param(1)))) = 1;
% figure;imshow(uint8(testim).*255);
end