-
Notifications
You must be signed in to change notification settings - Fork 1
/
predict.py
377 lines (312 loc) · 19.6 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import os
import subprocess
from typing import List, Optional
from argparse import Namespace
from tqdm import tqdm
from einops import rearrange
import numpy as np
import torch
from torch import autocast
from PIL import Image
from omegaconf import OmegaConf
from pytorch_lightning import seed_everything
from contextlib import nullcontext
subprocess.run(["mkdir", "-p", "/root/.cache/torch/hub/checkpoints"])
subprocess.run(["cp", "-r", "huggingface", "/root/.cache"])
subprocess.run(["cp", "checkpoint_liberty_with_aug.pth", "/root/.cache/torch/hub/checkpoints"])
# https://github.com/DagnyT/hardnet/raw/master/pretrained/train_liberty_with_aug/checkpoint_liberty_with_aug.pth
# from pnp_utils import check_safety
from pnp_ldm.models.diffusion.ddim import DDIMSampler
from run_features_extraction import load_model_from_config, load_img
from cog import BasePredictor, Path, Input, BaseModel
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class Predictor(BasePredictor):
def setup(self):
subprocess.run(["mkdir", "-p", "/root/.cache/torch/hub/checkpoints"])
subprocess.run(["cp", "-r", "huggingface", "/root/.cache"])
subprocess.run(["cp", "checkpoint_liberty_with_aug.pth", "/root/.cache/torch/hub/checkpoints"])
common_config = Namespace()
common_config.ddim_eta = 0.0
common_config.H = common_config.W = 512
common_config.C = 4 # Latent channels
common_config.f = 8 # downsampling factor
common_config.precision = "autocast"
common_config.save_all_features = False
common_config.check_safety = False
model_config = OmegaConf.load("configs/stable-diffusion/v1-inference.yaml")
self.model = load_model_from_config(model_config, "models/ldm/stable-diffusion-v1/model.ckpt")
self.common_config = common_config
def predict(
self,
input_image: Path = Input(description="Image to edit (instead of generation prompt"),
# ddim_inversion_steps: int = Input(description="Number of forward steps in diffusion process for invering the image (if supplied)", default=999),
generation_prompt: str = Input(description="Instead of input_image, generate an image from a text prompt"
" (Input image is ignored if this is supplied)",
default=""),
# num_ddim_steps: int = Input(description="Number of timesteps in the underlying diffusion process. default for generation from text is 50", ge=1, le=999, default=999),
translation_prompts: str = Input(
description="Text to Image prompts. A list of edit texts (separated by ';')"
" an image will be output for each edit txt",
default="A photo of a robot horse"),
scale: float = Input(
description="Unconditional guidance scale. Note that a higher value encourages deviation from the source image "
"(10 is the default for tranlsation from image 7.5 for text", default=10.),
feature_injection_threshold: float = Input(
description="Control the level of structure preservation. What timestep to stop Injecting"
" the saved features into the translation diffusion process. "
"(0 is first and 1 is final timestep meaning more preservation) ", ge=0., le=1.,
default=0.8),
negative_prompt: str = Input(description="Control the level of deviation from the source image",
default=""),
negative_prompt_alpha: float = Input(description="Strength of the effect of the negative prompt "
"(lower is stronger)", ge=0., le=1., default=1.)
) -> List[Path]:
self.common_config.generation_prompt = str(generation_prompt)
extraction_config = Namespace()
extraction_config.ddim_inversion_steps = 999
pnp_config = Namespace()
pnp_config.translation_prompts = str(translation_prompts).split(';')
pnp_config.feature_injection_threshold = float(feature_injection_threshold)
pnp_config.negative_prompt = str(negative_prompt)
pnp_config.negative_prompt_alpha = float(negative_prompt_alpha)
pnp_config.negative_prompt_schedule = "linear" # ∈ {"linear", "constant", "exp"}, determines the attenuation schedule of negative-prompting
# setting negative_prompt_alpha = 1.0, negative_prompt_schedule = "constant" is equivalent to not using negative prompting
if generation_prompt == '': # From Image
self.common_config.seed = 50
self.common_config.output_dir = "./outputs_real"
# Extraction
extraction_config.init_img = str(input_image)
extraction_config.ddim_steps = 999
extraction_config.save_feature_timesteps = 50
extraction_config.scale = 1.0
extract_features(self.model, self.common_config, extraction_config)
# Translation
pnp_config.scale = float(scale)
pnp_config.num_ddim_sampling_steps = extraction_config.save_feature_timesteps
image_paths = run_pnp(self.model, self.common_config, pnp_config)
return [Path(x) for x in image_paths]
else: # From text
self.common_config.seed = 50
self.common_config.output_dir = "./outputs_gen"
# Extraction
extraction_config.init_img = ""
extraction_config.save_feature_timesteps = extraction_config.ddim_steps = 50
extraction_config.scale = 5.0
gen_paths = extract_features(self.model, self.common_config, extraction_config)
# Translation
pnp_config.scale = float(scale)
pnp_config.num_ddim_sampling_steps = extraction_config.save_feature_timesteps
image_paths = run_pnp(self.model, self.common_config, pnp_config)
return [Path(x) for x in gen_paths] + [Path(x) for x in image_paths]
def extract_features(model, opt, exp_config):
seed_everything(opt.seed)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
unet_model = model.model.diffusion_model
sampler = DDIMSampler(model)
predicted_samples_path = os.path.join(opt.output_dir, "predicted_samples")
feature_maps_path = os.path.join(opt.output_dir, "feature_maps")
sample_path = os.path.join(opt.output_dir, "samples")
os.makedirs(opt.output_dir, exist_ok=True)
os.makedirs(predicted_samples_path, exist_ok=True)
os.makedirs(feature_maps_path, exist_ok=True)
os.makedirs(sample_path, exist_ok=True)
def save_sampled_img(x, i, save_path):
x_samples_ddim = model.decode_first_stage(x)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()
x_image_torch = torch.from_numpy(x_samples_ddim).permute(0, 3, 1, 2)
x_sample = x_image_torch[0]
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
img = Image.fromarray(x_sample.astype(np.uint8))
img.save(os.path.join(save_path, f"{i}.png"))
def ddim_sampler_callback(pred_x0, xt, i):
save_feature_maps_callback(i)
save_sampled_img(pred_x0, i, predicted_samples_path)
def save_feature_maps(blocks, i, feature_type="input_block"):
block_idx = 0
for block in tqdm(blocks, desc="Saving input blocks feature maps"):
if not opt.save_all_features and block_idx < 4:
block_idx += 1
continue
if "ResBlock" in str(type(block[0])):
if opt.save_all_features or block_idx == 4:
save_feature_map(block[0].in_layers_features,
f"{feature_type}_{block_idx}_in_layers_features_time_{i}")
save_feature_map(block[0].out_layers_features,
f"{feature_type}_{block_idx}_out_layers_features_time_{i}")
if len(block) > 1 and "SpatialTransformer" in str(type(block[1])):
save_feature_map(block[1].transformer_blocks[0].attn1.k,
f"{feature_type}_{block_idx}_self_attn_k_time_{i}")
save_feature_map(block[1].transformer_blocks[0].attn1.q,
f"{feature_type}_{block_idx}_self_attn_q_time_{i}")
block_idx += 1
def save_feature_maps_callback(i):
if opt.save_all_features:
save_feature_maps(unet_model.input_blocks, i, "input_block")
save_feature_maps(unet_model.output_blocks, i, "output_block")
def save_feature_map(feature_map, filename):
save_path = os.path.join(feature_maps_path, f"{filename}.pt")
torch.save(feature_map, save_path)
prompts = [opt.generation_prompt]
precision_scope = autocast if opt.precision == "autocast" else nullcontext
with torch.no_grad():
with precision_scope("cuda"):
with model.ema_scope():
uc = model.get_learned_conditioning([""])
c = model.get_learned_conditioning(prompts)
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
z_enc = None
if exp_config.init_img != '':
assert os.path.isfile(exp_config.init_img)
init_image = load_img(exp_config.init_img).to(device)
init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image))
z_enc, _ = sampler.encode_ddim(init_latent, num_steps=exp_config.ddim_inversion_steps,
conditioning=c, unconditional_conditioning=uc,
unconditional_guidance_scale=exp_config.scale)
else:
z_enc = torch.randn([1, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
torch.save(z_enc, f"{opt.output_dir}/z_enc.pt")
samples_ddim, _ = sampler.sample(S=exp_config.ddim_steps,
conditioning=c,
batch_size=1,
shape=shape,
verbose=False,
unconditional_guidance_scale=exp_config.scale,
unconditional_conditioning=uc,
eta=opt.ddim_eta,
x_T=z_enc,
img_callback=ddim_sampler_callback,
callback_ddim_timesteps=exp_config.save_feature_timesteps,
outpath=opt.output_dir)
x_samples_ddim = model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()
# if opt.check_safety:
# x_samples_ddim = check_safety(x_samples_ddim)
x_image_torch = torch.from_numpy(x_samples_ddim).permute(0, 3, 1, 2)
sample_idx = 0
png_paths = []
for x_sample in x_image_torch:
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
img = Image.fromarray(x_sample.astype(np.uint8))
png_path = os.path.join(sample_path, f"{sample_idx}.png")
img.save(png_path)
png_paths.append(png_path)
sample_idx += 1
print(f"Sampled images and extracted features saved in: {opt.output_dir}")
return png_paths
def run_pnp(model, opt, exp_config):
exp_config.feature_injection_threshold = int(
exp_config.feature_injection_threshold * exp_config.num_ddim_sampling_steps)
seed_everything(opt.seed)
negative_prompt = opt.generation_prompt if exp_config.negative_prompt is None else exp_config.negative_prompt
ddim_steps = exp_config.num_ddim_sampling_steps # TODO in generated scenario this shoud ddim_steps
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
sampler = DDIMSampler(model)
sampler.make_schedule(ddim_num_steps=ddim_steps, ddim_eta=opt.ddim_eta, verbose=False)
seed = torch.initial_seed()
opt.seed = seed
translation_folders = [p.replace(' ', '_') for p in exp_config.translation_prompts]
outpaths = [os.path.join(f"{opt.output_dir}/translations",
f"{exp_config.scale}_{translation_folder}") for translation_folder in translation_folders]
out_label = f"INJECTION_T_{exp_config.feature_injection_threshold}_STEPS_{ddim_steps}"
out_label += f"_NP-ALPHA_{exp_config.negative_prompt_alpha}_SCHEDULE_{exp_config.negative_prompt_schedule}_NP_{negative_prompt.replace(' ', '_')}"
predicted_samples_paths = [os.path.join(outpath, f"predicted_samples_{out_label}") for outpath in outpaths]
for i in range(len(outpaths)):
os.makedirs(outpaths[i], exist_ok=True)
os.makedirs(predicted_samples_paths[i], exist_ok=True)
def save_sampled_img(x, i, save_paths):
for im in range(x.shape[0]):
x_samples_ddim = model.decode_first_stage(x[im].unsqueeze(0))
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()
x_image_torch = torch.from_numpy(x_samples_ddim).permute(0, 3, 1, 2)
x_sample = x_image_torch[0]
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
img = Image.fromarray(x_sample.astype(np.uint8))
img.save(os.path.join(save_paths[im], f"{i}.png"))
def ddim_sampler_callback(pred_x0, xt, i):
save_sampled_img(pred_x0, i, predicted_samples_paths)
def load_target_features():
self_attn_output_block_indices = [4, 5, 6, 7, 8, 9, 10, 11]
out_layers_output_block_indices = [4]
output_block_self_attn_map_injection_thresholds = [ddim_steps // 2] * len(self_attn_output_block_indices)
feature_injection_thresholds = [exp_config.feature_injection_threshold]
target_features = []
source_experiment_out_layers_path = os.path.join(opt.output_dir, "feature_maps")
source_experiment_qkv_path = os.path.join(opt.output_dir, "feature_maps")
time_range = np.flip(sampler.ddim_timesteps)
total_steps = sampler.ddim_timesteps.shape[0]
iterator = tqdm(time_range, desc="loading source experiment features", total=total_steps)
for i, t in enumerate(iterator):
current_features = {}
for (output_block_idx, output_block_self_attn_map_injection_threshold) in zip(
self_attn_output_block_indices, output_block_self_attn_map_injection_thresholds):
if i <= int(output_block_self_attn_map_injection_threshold):
output_q = torch.load(os.path.join(source_experiment_qkv_path,
f"output_block_{output_block_idx}_self_attn_q_time_{t}.pt"))
output_k = torch.load(os.path.join(source_experiment_qkv_path,
f"output_block_{output_block_idx}_self_attn_k_time_{t}.pt"))
current_features[f'output_block_{output_block_idx}_self_attn_q'] = output_q
current_features[f'output_block_{output_block_idx}_self_attn_k'] = output_k
for (output_block_idx, feature_injection_threshold) in zip(out_layers_output_block_indices,
feature_injection_thresholds):
if i <= int(feature_injection_threshold):
output = torch.load(os.path.join(source_experiment_out_layers_path,
f"output_block_{output_block_idx}_out_layers_features_time_{t}.pt"))
current_features[f'output_block_{output_block_idx}_out_layers'] = output
target_features.append(current_features)
return target_features
batch_size = len(exp_config.translation_prompts)
translation_prompts = exp_config.translation_prompts
start_code_path = f"{opt.output_dir}/z_enc.pt"
start_code = torch.load(start_code_path).cuda() if os.path.exists(start_code_path) else None
if start_code is not None:
start_code = start_code.repeat(batch_size, 1, 1, 1)
precision_scope = autocast if opt.precision == "autocast" else nullcontext
injected_features = load_target_features()
unconditional_prompt = ""
with torch.no_grad():
with precision_scope("cuda"):
with model.ema_scope():
uc = None
nc = None
if exp_config.scale != 1.0:
uc = model.get_learned_conditioning(batch_size * [unconditional_prompt])
nc = model.get_learned_conditioning(batch_size * [negative_prompt])
c = model.get_learned_conditioning(translation_prompts)
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
samples_ddim, _ = sampler.sample(S=ddim_steps,
conditioning=c,
negative_conditioning=nc,
batch_size=len(translation_prompts),
shape=shape,
verbose=False,
unconditional_guidance_scale=exp_config.scale,
unconditional_conditioning=uc,
eta=opt.ddim_eta,
x_T=start_code,
img_callback=ddim_sampler_callback,
injected_features=injected_features,
negative_prompt_alpha=exp_config.negative_prompt_alpha,
negative_prompt_schedule=exp_config.negative_prompt_schedule,
)
x_samples_ddim = model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()
# if opt.check_safety:
# x_samples_ddim = check_safety(x_samples_ddim)
x_image_torch = torch.from_numpy(x_samples_ddim).permute(0, 3, 1, 2)
png_paths = []
sample_idx = 0
for k, x_sample in enumerate(x_image_torch):
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
img = Image.fromarray(x_sample.astype(np.uint8))
png_path = os.path.join(outpaths[k], f"{out_label}_sample_{sample_idx}.png")
png_paths.append(png_path)
img.save(png_path)
sample_idx += 1
print(f"PnP results saved in: {'; '.join(outpaths)}")
return png_paths