-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathutils.py
executable file
·92 lines (75 loc) · 2.77 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import os
import torch
import numpy as np
def build_path(path):
path_levels = path.split('/')
cur_path = ""
for path_seg in path_levels:
if len(cur_path):
cur_path = cur_path + "/" + path_seg
else:
cur_path = path_seg
if not os.path.exists(cur_path):
os.mkdir(cur_path)
def get_label(data, order, offset, label_dim):
output = []
for i in order:
output.append(data[i][offset:offset+label_dim])
output = np.array(output, dtype="int")
return output
def get_feat(data, order, meta_offset, label_dim, feature_dim):
output = []
meta_output = []
offset = meta_offset + label_dim
for i in order:
meta_output.append(data[i][:meta_offset])
output.append(data[i][offset:offset + feature_dim])
output = np.array(output, dtype="float32")
meta_output = np.array(meta_output, dtype="float32")
return np.concatenate([output, meta_output], axis=1)
def log_normal(x, m, v):
log_prob = (-0.5 * (torch.log(v) + (x-m).pow(2) / v)).sum(-1)
return log_prob
def log_normal_mixture(z, m, v, mask=None):
m = m.unsqueeze(0).expand(z.shape[0], -1, -1)
v = v.unsqueeze(0).expand(z.shape[0], -1, -1)
batch, mix, dim = m.size()
z = z.view(batch, 1, dim).expand(batch, mix, dim)
indiv_log_prob = log_normal(z, m, v) + torch.ones_like(mask)*(-1e6)*(1.-mask)
log_prob = log_mean_exp(indiv_log_prob, mask)
return log_prob
def log_mean_exp(x, mask):
return log_sum_exp(x, mask) - torch.log(mask.sum(1))
def log_sum_exp(x, mask):
max_x = torch.max(x, 1)[0]
new_x = x - max_x.unsqueeze(1).expand_as(x)
return max_x + (new_x.exp().sum(1)).log()
THRESHOLDS = []
for i in range(1, 10):
THRESHOLDS.append(i / 10.)
def imq_kernel(X: torch.Tensor,
Y: torch.Tensor,
h_dim: int):
batch_size = X.size(0)
norms_x = X.pow(2).sum(1, keepdim=True) # batch_size x 1
prods_x = torch.mm(X, X.t()) # batch_size x batch_size
dists_x = norms_x + norms_x.t() - 2 * prods_x
norms_y = Y.pow(2).sum(1, keepdim=True) # batch_size x 1
prods_y = torch.mm(Y, Y.t()) # batch_size x batch_size
dists_y = norms_y + norms_y.t() - 2 * prods_y
dot_prd = torch.mm(X, Y.t())
dists_c = norms_x + norms_y.t() - 2 * dot_prd
stats = 0
for scale in [.1, .2, .5, 1., 2., 5., 10.]:
C = 2 * h_dim * 1.0 * scale
res1 = C / (C + dists_x)
res1 += C / (C + dists_y)
if torch.cuda.is_available():
res1 = (1 - torch.eye(batch_size).cuda()) * res1
else:
res1 = (1 - torch.eye(batch_size)) * res1
res1 = res1.sum() / (batch_size - 1)
res2 = C / (C + dists_c)
res2 = res2.sum() * 2. / (batch_size)
stats += res1 - res2
return stats