-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmodel.py
executable file
·190 lines (161 loc) · 6.25 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils import log_normal, log_normal_mixture
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class VAE(nn.Module):
def __init__(self, args):
super(VAE, self).__init__()
self.args = args
self.dropout = nn.Dropout(p=args.keep_prob)
"""Feature encoder"""
self.fx = nn.Sequential(
nn.Linear(args.feature_dim, 256),
nn.ReLU(),
self.dropout,
nn.Linear(256, 512),
nn.ReLU(),
self.dropout,
nn.Linear(512, 256),
nn.ReLU(),
self.dropout
)
self.fx_mu = nn.Linear(256, args.latent_dim)
self.fx_logvar = nn.Linear(256, args.latent_dim)
"""Label encoder"""
self.label_lookup = nn.Linear(args.label_dim, args.emb_size)
self.fe = nn.Sequential(
nn.Linear(args.emb_size, 512),
nn.ReLU(),
self.dropout,
nn.Linear(512, 256),
nn.ReLU(),
self.dropout
)
self.fe_mu = nn.Linear(256, args.latent_dim)
self.fe_logvar = nn.Linear(256, args.latent_dim)
"""Decoder"""
self.fd = nn.Sequential(
nn.Linear(args.feature_dim + args.latent_dim, 512),
nn.ReLU(),
nn.Linear(512, args.emb_size),
nn.LeakyReLU()
)
def label_encode(self, x):
h0 = self.dropout(F.relu(self.label_lookup(x)))
h = self.fe(h0)
mu = self.fe_mu(h)
logvar = self.fe_logvar(h)
fe_output = {
'fe_mu': mu,
'fe_logvar': logvar
}
return fe_output
def feat_encode(self, x):
h = self.fx(x)
mu = self.fx_mu(h)
logvar = self.fx_logvar(h)
fx_output = {
'fx_mu': mu,
'fx_logvar': logvar
}
return fx_output
def decode(self, z):
d = self.fd(z)
d = F.normalize(d, dim=1)
return d
def label_forward(self, x, feat):
n_label = x.shape[1]
all_labels = torch.eye(n_label).to(device)
fe_output = self.label_encode(all_labels)
mu = fe_output['fe_mu']
z = torch.matmul(x, mu) / x.sum(1, keepdim=True)
label_emb = self.decode(torch.cat((feat, z), 1))
fe_output['label_emb'] = label_emb
return fe_output
def feat_forward(self, x):
fx_output = self.feat_encode(x)
mu = fx_output['fx_mu']
logvar = fx_output['fx_logvar']
if not self.training:
z = mu
z2 = mu
else:
z = reparameterize(mu, logvar)
z2 = reparameterize(mu, logvar)
feat_emb = self.decode(torch.cat((x, z), 1))
feat_emb2 = self.decode(torch.cat((x, z2), 1))
fx_output['feat_emb'] = feat_emb
fx_output['feat_emb2'] = feat_emb2
return fx_output
def forward(self, label, feature):
fe_output = self.label_forward(label, feature)
label_emb = fe_output['label_emb']
fx_output = self.feat_forward(feature)
feat_emb, feat_emb2 = fx_output['feat_emb'], fx_output['feat_emb2']
embs = self.label_lookup.weight
label_out = torch.matmul(label_emb, embs)
feat_out = torch.matmul(feat_emb, embs)
feat_out2 = torch.matmul(feat_emb2, embs)
fe_output.update(fx_output)
output = fe_output
output['embs'] = embs
output['label_out'] = label_out
output['feat_out'] = feat_out
output['feat_out2'] = feat_out2
output['feat'] = feature
return output
def reparameterize(mu, logvar):
std = torch.exp(0.5*logvar)
eps = torch.randn_like(std)
return mu + eps*std
def compute_loss(input_label, output, args=None):
fe_out, fe_mu, fe_logvar, label_emb = \
output['label_out'], output['fe_mu'], output['fe_logvar'], output['label_emb']
fx_out, fx_mu, fx_logvar, feat_emb = \
output['feat_out'], output['fx_mu'], output['fx_logvar'], output['feat_emb']
fx_out2 = output['feat_out2']
embs = output['embs']
fx_sample = reparameterize(fx_mu, fx_logvar)
fx_var = torch.exp(fx_logvar)
fe_var = torch.exp(fe_logvar)
kl_loss = (log_normal(fx_sample, fx_mu, fx_var) - \
log_normal_mixture(fx_sample, fe_mu, fe_var, input_label)).mean()
pred_e = torch.sigmoid(fe_out)
pred_x = torch.sigmoid(fx_out)
pred_x2 = torch.sigmoid(fx_out2)
def compute_BCE_and_RL_loss(E):
#compute negative log likelihood (BCE loss) for each sample point
sample_nll = -(
torch.log(E) * input_label + torch.log(1 - E) * (1 - input_label)
)
logprob = -torch.sum(sample_nll, dim=2)
#the following computation is designed to avoid the float overflow (log_sum_exp trick)
maxlogprob = torch.max(logprob, dim=0)[0]
Eprob = torch.mean(torch.exp(logprob - maxlogprob), axis=0)
nll_loss = torch.mean(-torch.log(Eprob) - maxlogprob)
return nll_loss
def supconloss(label_emb, feat_emb, embs, temp=1.0):
features = torch.cat((label_emb, feat_emb))
labels = torch.cat((input_label, input_label)).float()
n_label = labels.shape[1]
emb_labels = torch.eye(n_label).to(device)
mask = torch.matmul(labels, emb_labels)
anchor_dot_contrast = torch.div(
torch.matmul(features, embs),
temp)
logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True)
logits = anchor_dot_contrast - logits_max.detach()
exp_logits = torch.exp(logits)
log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True))
mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1)
loss = -mean_log_prob_pos
loss = loss.mean()
return loss
nll_loss = compute_BCE_and_RL_loss(pred_e.unsqueeze(0))
nll_loss_x = compute_BCE_and_RL_loss(pred_x.unsqueeze(0))
nll_loss_x2 = compute_BCE_and_RL_loss(pred_x2.unsqueeze(0))
sum_nll_loss = nll_loss + nll_loss_x + nll_loss_x2
cpc_loss = supconloss(label_emb, feat_emb, embs)
total_loss = sum_nll_loss * args.nll_coeff + kl_loss * 6. + cpc_loss
return total_loss, nll_loss, nll_loss_x, 0., 0., kl_loss, cpc_loss, pred_e, pred_x