-
Notifications
You must be signed in to change notification settings - Fork 62
/
get_frames_and_scene_seg.py
241 lines (208 loc) · 7.41 KB
/
get_frames_and_scene_seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# coding=utf-8
"""Given the prepared trajectories and original dataset, get frames and seg."""
import argparse
import cv2
import os
import sys
from glob import glob
from tqdm import tqdm
import numpy as np
parser = argparse.ArgumentParser()
parser.add_argument("traj_path")
parser.add_argument("rgb_video_path")
parser.add_argument("seg_video_path")
parser.add_argument("out_frame_path")
parser.add_argument("out_seg_feat_path", help="save as npy files")
parser.add_argument("bad_video_lst",
help="save the video lst that rgb and scene seg dont"
" match.")
parser.add_argument("--scene_h", default=36, type=int)
parser.add_argument("--scene_w", default=64, type=int)
parser.add_argument("--is_multifuture", action="store_true",
help="The traj file name is not the video name")
parser.add_argument("--is_debug", action="store_true",
help="save the carla class back to rgb")
def mkdir(path):
if not os.path.exists(path):
os.makedirs(path)
def get_frame_idxs(traj_file, start=0):
frame_idxs = {}
for line in open(traj_file).readlines():
frame_idx, pid, x, y = line.strip().split("\t")
frame_idx = int(frame_idx) + start
frame_idxs[frame_idx] = 1
return sorted(frame_idxs)
# https://carla.readthedocs.io/en/latest/cameras_and_sensors/#sensorcamerasemantic_segmentation
carla_to_ade20k = {
0: 0,
1: 2,
2: 33,
3: 0,
4: 13, # person
5: 94,
6: 7,
7: 7,
8: 12,
9: 10,
10: 21,
11: 1,
12: 137,
}
# rgb
carla_rgb_to_classid = {
(0, 0, 0): 0,
(70, 70, 70): 1,
(190, 153, 153): 2,
(250, 170, 160): 3,
(220, 20, 60): 4,
(153, 153, 153): 5,
(157, 234, 50): 6,
(128, 64, 128): 7,
(244, 35, 232): 8,
(107, 142, 35): 9,
(0, 0, 142): 10,
(102, 102, 156): 11,
(220, 220, 0): 12,
}
#carla_classid_to_rgb = {v:k for k, v in carla_rgb_to_classid.iteritems()}
carla_classid_to_rgb = {v:k for k, v in carla_rgb_to_classid.items()}
def rgb_to_carla(color, color_mapping):
# color is uint8
img_h, img_w, _ = color.shape
scene_seg = np.zeros((img_h, img_w), dtype="uint8")
for i in range(img_h):
for j in range(img_w):
r, g, b = color[i, j]
key = (r, g, b)
#if not color_mapping.has_key(key):
if key not in color_mapping:
scene_seg[i, j] = 0 # other
else:
scene_seg[i, j] = color_mapping[key]
return scene_seg
if __name__ == "__main__":
args = parser.parse_args()
traj_files = glob(os.path.join(args.traj_path, "*", "*.txt"))
multifuture_frame_start = {
"virat": 40, # range(40, 125, 12)
"ethucy": 32, # range(32, 103, 10)
}
# we permute the carla_rgb to scene class mapping
# due to mp4 compression
# ugly but it works
color_mapping = {}
for r, g, b in carla_rgb_to_classid:
for i in range(-4, 5):
for j in range(-4, 5):
for k in range(-4, 5):
if ((r+i >= 0) and (r+i <= 255)) and ((g+j >= 0) and (g+j <= 255)) \
and ((b+k >= 0) and (b+k <= 255)):
color_mapping[(r+i, g+j, b+k)] = carla_rgb_to_classid[(r, g, b)]
bad_video_lst = []
for traj_file in tqdm(traj_files):
split = traj_file.split("/")[-2]
videoname = os.path.splitext(os.path.basename(traj_file))[0]
frame_path = os.path.join(args.out_frame_path, videoname)
seg_path = os.path.join(args.out_seg_feat_path, videoname)
mkdir(frame_path)
mkdir(seg_path)
# 1. get video frames
if args.is_multifuture:
scene, moment_idx, x_agent_pid, camera = videoname.split("_")
if scene.startswith("0"):
start = multifuture_frame_start["virat"]
else:
start = multifuture_frame_start["ethucy"]
video_file = glob(os.path.join(
args.rgb_video_path,
"%s_%s_%s_*_%s.mp4" % (scene, moment_idx, x_agent_pid, camera)))[0]
else:
start = 0
video_file = os.path.join(args.rgb_video_path, "%s.mp4" % videoname)
all_frame_idxs = get_frame_idxs(traj_file, start=start)
try:
vcap = cv2.VideoCapture(video_file)
if not vcap.isOpened():
raise Exception("cannot open %s" % video_file)
except Exception as e:
raise e
frame_count = vcap.get(cv2.CAP_PROP_FRAME_COUNT)
cur_rgb_frame = 0
got_rgb_frame = 0
while cur_rgb_frame < frame_count:
suc, frame = vcap.read()
assert suc, (videoname, cur_rgb_frame, frame_count)
if cur_rgb_frame not in all_frame_idxs:
cur_rgb_frame += 1
continue
frame = frame.astype("float32")
cv2.imwrite(os.path.join(
frame_path, "%s_F_%08d.jpg" % (videoname, cur_rgb_frame - start)),
frame)
got_rgb_frame += 1
cur_rgb_frame += 1
# 2. get the scene seg feature into the ade20k format and save as npy
if args.is_multifuture:
scene, moment_idx, x_agent_pid, camera = videoname.split("_")
video_file = glob(os.path.join(
args.seg_video_path,
"%s_%s_%s_*_%s.mp4" % (scene, moment_idx, x_agent_pid, camera)))[0]
else:
video_file = os.path.join(args.seg_video_path, "%s.mp4" % videoname)
try:
vcap = cv2.VideoCapture(video_file)
if not vcap.isOpened():
raise Exception("cannot open %s" % video_file)
except Exception as e:
raise e
frame_count = vcap.get(cv2.CAP_PROP_FRAME_COUNT)
cur_seg_frame = 0
got_seg_frame = 0
while cur_seg_frame < frame_count:
suc, frame = vcap.read()
assert suc, videoname
if cur_seg_frame not in all_frame_idxs:
cur_seg_frame += 1
continue
# resize first
frame = cv2.resize(frame, (args.scene_w, args.scene_h),
interpolation=cv2.INTER_NEAREST) # this keep the rgb
# rgb to the scene class
# (36, 64, 3) -> (36, 64)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
carla_scene_seg = rgb_to_carla(frame, color_mapping)
if args.is_debug:
# for debugging, save the class back to rgb
carla_scene_seg_rgb = np.zeros((args.scene_h, args.scene_w, 3),
dtype=np.uint8)
for i in range(args.scene_h):
for j in range(args.scene_w):
# rgb to bgr
r, g, b = carla_classid_to_rgb[carla_scene_seg[i, j]]
carla_scene_seg_rgb[i, j, :] = [b, g, r]
cv2.imwrite(os.path.join(
seg_path, "%s_F_%08d.jpg" % (videoname, cur_seg_frame - start)),
carla_scene_seg_rgb)
# convert carla class to ade20k class
for i in range(args.scene_h):
for j in range(args.scene_w):
carla_scene_seg[i, j] = carla_to_ade20k[carla_scene_seg[i, j]]
np.save(os.path.join(
seg_path, "%s_F_%08d.npy" % (videoname, cur_seg_frame - start)),
carla_scene_seg)
got_seg_frame += 1
cur_seg_frame += 1
if (got_seg_frame != got_rgb_frame) or \
(got_rgb_frame != len(all_frame_idxs)):
print("warning, %s video has %s rgb frame, %s seg frames, %s in traj" % (
videoname, got_rgb_frame, got_seg_frame, len(all_frame_idxs)))
bad_video_lst.append((split, videoname))
if args.is_debug:
sys.exit()
# save the bad video lst to delete
print("total video %s, %s bad (%.4f)" % (
len(traj_files), len(bad_video_lst),
len(bad_video_lst)/float(len(traj_files))))
with open(args.bad_video_lst, "w") as f:
for split, videoname in bad_video_lst:
f.writelines("%s/%s\n" % (split, videoname))