-
Notifications
You must be signed in to change notification settings - Fork 25
/
inference.py
188 lines (167 loc) · 8.25 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import argparse
import json
import os
import time
from PIL import Image
import cv2
import numpy as np
import torch
import tqdm
from easy_ViTPose.vit_utils.inference import NumpyEncoder, VideoReader
from easy_ViTPose.inference import VitInference
from easy_ViTPose.vit_utils.visualization import joints_dict
try:
import onnxruntime # noqa: F401
has_onnx = True
except ModuleNotFoundError:
has_onnx = False
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--input', type=str, required=True,
help='path to image / video or webcam ID (=cv2)')
parser.add_argument('--output-path', type=str, default='',
help='output path, if the path provided is a directory '
'output files are "input_name +_result{extension}".')
parser.add_argument('--model', type=str, required=True,
help='checkpoint path of the model')
parser.add_argument('--yolo', type=str, required=False, default=None,
help='checkpoint path of the yolo model')
parser.add_argument('--dataset', type=str, required=False, default=None,
help='Name of the dataset. If None it"s extracted from the file name. \
["coco", "coco_25", "wholebody", "mpii", "ap10k", "apt36k", "aic"]')
parser.add_argument('--det-class', type=str, required=False, default=None,
help='["human", "cat", "dog", "horse", "sheep", \
"cow", "elephant", "bear", "zebra", "giraffe", "animals"]')
parser.add_argument('--model-name', type=str, required=False, choices=['s', 'b', 'l', 'h'],
help='[s: ViT-S, b: ViT-B, l: ViT-L, h: ViT-H]')
parser.add_argument('--yolo-size', type=int, required=False, default=320,
help='YOLOv8 image size during inference')
parser.add_argument('--conf-threshold', type=float, required=False, default=0.5,
help='Minimum confidence for keypoints to be drawn. [0, 1] range')
parser.add_argument('--rotate', type=int, choices=[0, 90, 180, 270],
required=False, default=0,
help='Rotate the image of [90, 180, 270] degress counterclockwise')
parser.add_argument('--yolo-step', type=int,
required=False, default=1,
help='The tracker can be used to predict the bboxes instead of yolo for performance, '
'this flag specifies how often yolo is applied (e.g. 1 applies yolo every frame). '
'This does not have any effect when is_video is False')
parser.add_argument('--single-pose', default=False, action='store_true',
help='Do not use SORT tracker because single pose is expected in the video')
parser.add_argument('--show', default=False, action='store_true',
help='preview result during inference')
parser.add_argument('--show-yolo', default=False, action='store_true',
help='draw yolo results')
parser.add_argument('--show-raw-yolo', default=False, action='store_true',
help='draw yolo result before that SORT is applied for tracking'
' (only valid during video inference)')
parser.add_argument('--save-img', default=False, action='store_true',
help='save image results')
parser.add_argument('--save-json', default=False, action='store_true',
help='save json results')
args = parser.parse_args()
use_mps = hasattr(torch.backends, 'mps') and torch.backends.mps.is_available()
use_cuda = torch.cuda.is_available()
# Load Yolo
yolo = args.yolo
if yolo is None:
yolo = 'easy_ViTPose/' + ('yolov8s' + ('.onnx' if has_onnx and not (use_mps or use_cuda) else '.pt'))
input_path = args.input
# Load the image / video reader
try: # Check if is webcam
int(input_path)
is_video = True
except ValueError:
assert os.path.isfile(input_path), 'The input file does not exist'
is_video = input_path[input_path.rfind('.') + 1:].lower() in ['mp4', 'mov']
ext = '.mp4' if is_video else '.png'
assert not (args.save_img or args.save_json) or args.output_path, \
'Specify an output path if using save-img or save-json flags'
output_path = args.output_path
if output_path:
if os.path.isdir(output_path):
og_ext = input_path[input_path.rfind('.'):]
save_name_img = os.path.basename(input_path).replace(og_ext, f"_result{ext}")
save_name_json = os.path.basename(input_path).replace(og_ext, "_result.json")
output_path_img = os.path.join(output_path, save_name_img)
output_path_json = os.path.join(output_path, save_name_json)
else:
output_path_img = output_path + f'{ext}'
output_path_json = output_path + '.json'
wait = 0
total_frames = 1
if is_video:
reader = VideoReader(input_path, args.rotate)
cap = cv2.VideoCapture(input_path) # type: ignore
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
cap.release()
wait = 15
if args.save_img:
cap = cv2.VideoCapture(input_path) # type: ignore
fps = cap.get(cv2.CAP_PROP_FPS)
ret, frame = cap.read()
cap.release()
assert ret
assert fps > 0
output_size = frame.shape[:2][::-1]
# Check if we have X264 otherwise use default MJPG
try:
temp_video = cv2.VideoWriter('/tmp/checkcodec.mp4',
cv2.VideoWriter_fourcc(*'h264'), 30, (32, 32))
opened = temp_video.isOpened()
except Exception:
opened = False
codec = 'h264' if opened else 'MJPG'
out_writer = cv2.VideoWriter(output_path_img,
cv2.VideoWriter_fourcc(*codec), # More efficient codec
fps, output_size) # type: ignore
else:
reader = [np.array(Image.open(input_path).rotate(args.rotate))] # type: ignore
# Initialize model
model = VitInference(args.model, yolo, args.model_name,
args.det_class, args.dataset,
args.yolo_size, is_video=is_video,
single_pose=args.single_pose,
yolo_step=args.yolo_step) # type: ignore
print(f">>> Model loaded: {args.model}")
print(f'>>> Running inference on {input_path}')
keypoints = []
fps = []
tot_time = 0.
for (ith, img) in tqdm.tqdm(enumerate(reader), total=total_frames):
t0 = time.time()
# Run inference
frame_keypoints = model.inference(img)
keypoints.append(frame_keypoints)
delta = time.time() - t0
tot_time += delta
fps.append(delta)
# Draw the poses and save the output img
if args.show or args.save_img:
# Draw result and transform to BGR
img = model.draw(args.show_yolo, args.show_raw_yolo, args.conf_threshold)[..., ::-1]
if args.save_img:
# TODO: If exists add (1), (2), ...
if is_video:
out_writer.write(img)
else:
print('>>> Saving output image')
cv2.imwrite(output_path_img, img)
if args.show:
cv2.imshow('preview', img)
cv2.waitKey(wait)
if is_video:
tot_poses = sum(len(k) for k in keypoints)
print(f'>>> Mean inference FPS: {1 / np.mean(fps):.2f}')
print(f'>>> Total poses predicted: {tot_poses} mean per frame: '
f'{(tot_poses / (ith + 1)):.2f}')
print(f'>>> Mean FPS per pose: {(tot_poses / tot_time):.2f}')
if args.save_json:
print('>>> Saving output json')
with open(output_path_json, 'w') as f:
out = {'keypoints': keypoints,
'skeleton': joints_dict()[model.dataset]['keypoints']}
json.dump(out, f, cls=NumpyEncoder)
if is_video and args.save_img:
out_writer.release()
cv2.destroyAllWindows()