You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I am trying to train a RL agent using SB3, torch, and Gymnasium. I use a linux environment through wsl2 (Ubuntu-22.04), and VisualStudio Code. To speed up the step phase in my environment, I invoke Julia passing through juliacall to propagate the dynamics of my problem. I report here the main points of my implementation.
Problem dynamics in Julia: bcr4bp.jl
# Import dependencies
using OrdinaryDiffEq
# Struct for environment dynamical settings
struct bcr4bpEnvJl
# Reference quantities
mu::Float64
mu3::Float64
om3::Float64
rho3::Float64
tau0::Float64
alpha0::Float64
# Propagator
absTol::Float64
relTol::Float64
end
# Dynamical function for ODE propagation
function bcr4bpRHS(dxx, xx, ENV::bcr4bpEnvJl, tau)
# Parameters extraction
mu = ENV.mu
mu3 = ENV.mu3
om3 = ENV.om3
rho3 = ENV.rho3
tau0 = ENV.tau0
alpha0 = ENV.alpha0
# Retrieve states
x = xx[1]
y = xx[2]
z = xx[3]
xd = xx[4]
yd = xx[5]
zd = xx[6]
alpha = om3 * (tau - tau0) + alpha0
# Compute distances from primaries
r1 = sqrt((x+mu)^2 + y^2 + z^2);
r2 = sqrt((x+mu-1)^2 + y^2 + z^2);
r3 = sqrt((x-rho3*cos(alpha))^2 + (y-rho3*sin(alpha))^2 + z^2);
# Compute RHS
ff3 = [xd;
yd;
zd;
2*yd + x - (1-mu)*(x+mu)/r1^3 - mu*(x+mu-1)/r2^3;
-2*xd + y - (1-mu)*y/r1^3 - mu*y/r2^3;
-(1-mu)*z/r1^3 - mu*z/r2^3;;]
ff4 = [0;
0;
0;
-mu3*(x-rho3*cos(alpha))/r3^3 - mu3/rho3^2*cos(alpha);
-mu3*(y-rho3*sin(alpha))/r3^3 - mu3/rho3^2*sin(alpha);
-mu3*z/r3^3;;]
# Return
dyn = ff3 .+ ff4
dxx[1:6] = dyn[:]
end
# Propagation
function bcr4bpPropagation(xx0, tSpan, ENV::bcr4bpEnvJl, is_flow)
# Formulate ODE problem
prob = ODEProblem(bcr4bpRHS, xx0, tSpan, ENV)
# Perform propagation
sol = solve(prob, Vern9(), abstol=ENV.absTol, reltol=ENV.relTol)
# Check solution and return
if sol.retcode == ReturnCode.Success
if is_flow
return sol[:, end]
else
return sol
end
else
return 0
end
end
RL Gymnasium environment mission_env.py
import gymnasium as gym
import numpy as np
from copy import deepcopy
from gymnasium import spaces
from src.astro.bcr4bp.bcr4bp import Bcr4bp
from src.utils.mission_settings import MissionSettings
from src.utils.propagator import Propagator
from src.utils import util_methods
import juliacall
from juliacall import Main as jl_main
jl_main.include("src/astro/bcr4bp/bcr4bp.jl")
class FbpMissionEnv(gym.Env):
metadata = {"render_modes": ["rgb_array"]}
def __init__(self,
dt_step: np.float64,
bcr4bp: Bcr4bp,
mission_settings: MissionSettings,
propagator: Propagator):
# Init code ...
# Julia environment definition
self._bcr4bp_env_jl = jl_main.bcr4bpEnvJl(jl_main.Float64(self._bcr4bp.mu),
jl_main.Float64(self._bcr4bp.mu_tertiary),
jl_main.Float64(self._bcr4bp.om_tertiary),
jl_main.Float64(self._bcr4bp.dist_tertiary),
jl_main.Float64(self._bcr4bp.tau_ref),
jl_main.Float64(self._bcr4bp.alpha_ref),
jl_main.Float64(self._propagator.abs_tol),
jl_main.Float64(self._propagator.rel_tol))
def reset(self, seed=None, options=None):
# Reset code ...
return self._get_obs(), self._get_info()
def step(self, action):
# Some computing ...
# Propagation
# xx_0 --> np.array() of 6 elements
# tau_0 and tau_f --> floats
xx_f = np.array(jl_main.bcr4bpPropagation(np.float64(xx_0), np.array([tau_0, tau_f], dtype=np.float64), self._bcr4bp_env_jl, True), np.float64)
if np.size(xx_f) != 6: # Bad propagation
self._stop_bad_propagation = True
return self._get_obs(), -10, False, True, self._get_info()
# Some computing ...
return self._get_obs(), reward, terminated, False, self._get_info()
When I run my code, the training works fine for some time. However, at an apparently random point, it segments (or returns exceptions). The error seems to be related to the Python to Julia conversion of inputs prior invoking jl_main.bcr4bpPropagation or to the conversion of the return from Julia. If running in debug mode, when the code returns exceptions I am able to run the faulty line in the debug console with no problems xx_f = np.array(jl_main.bcr4bpPropagation(np.float64(xx_0), np.array([tau_0, tau_f], dtype=np.float64), self._bcr4bp_env_jl, True), np.float64))
and I cannot explain this behavior. I guess it is related to some bad management of memory addresses. I also started thinking that maybe there are some limitation in using WSL in this context. I am not using multi-threads training / vectorized environments, so everything should be quite smooth. I tried different approaches such as, for example, converting the inputs to Julia format before calling the function. This problem does not appear if using the scipy integrate module rather than Julia. Therefore, I guess this segmentation fault is due to some troubles in calling Julia during run-time.
I report for reference the segfault_log file from faulthandler (this is only and example, as the segmentation always happens at the same point, but for different reasons. Note that in this case I was able to run the faulty line in the debug console)
> Traceback (most recent call last):
File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/usr/lib/python3.10/runpy.py", line 86, in _run_code
exec(code, run_globals)
File "/home/user/.vscode-server/extensions/ms-python.debugpy-2024.12.0-linux-x64/bundled/libs/debugpy/adapter/../../debugpy/launcher/../../debugpy/__main__.py", line 71, in
<module>
cli.main()
File "/home/user/.vscode-server/extensions/ms-python.debugpy-2024.12.0-linux-x64/bundled/libs/debugpy/adapter/../../debugpy/launcher/../../debugpy/../debugpy/server/cli.py", line
501, in main
run()
File "/home/user/.vscode-server/extensions/ms-python.debugpy-2024.12.0-linux-x64/bundled/libs/debugpy/adapter/../../debugpy/launcher/../../debugpy/../debugpy/server/cli.py", line
351, in run_file
runpy.run_path(target, run_name="__main__")
File "/home/user/.vscode-server/extensions/ms-python.debugpy-2024.12.0-linux-x64/bundled/libs/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_runpy.py", line 310, in run_path
return _run_module_code(code, init_globals, run_name, pkg_name=pkg_name, script_name=fname)
File "/home/user/.vscode-server/extensions/ms-python.debugpy-2024.12.0-linux-x64/bundled/libs/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_runpy.py", line 127, in
_run_module_code
_run_code(code, mod_globals, init_globals, mod_name, mod_spec, pkg_name, script_name)
File "/home/user/.vscode-server/extensions/ms-python.debugpy-2024.12.0-linux-x64/bundled/libs/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_runpy.py", line 118, in _run_code
exec(code, run_globals)
File "/home/user/project/scripts/train.py", line 83, in <module>
model.learn(total_timesteps=3e6,
File "/home/user/project/.venv/lib/python3.10/site-packages/stable_baselines3/ppo/ppo.py", line 311, in learn
return super().learn(
File "/home/user/project/.venv/lib/python3.10/site-packages/stable_baselines3/common/on_policy_algorithm.py", line 323, in learn
continue_training = self.collect_rollouts(self.env, callback, self.rollout_buffer, n_rollout_steps=self.n_steps)
File "/home/user/project/.venv/lib/python3.10/site-packages/stable_baselines3/common/on_policy_algorithm.py", line 218, in collect_rollouts
new_obs, rewards, dones, infos = env.step(clipped_actions)
File "/home/user/project/.venv/lib/python3.10/site-packages/stable_baselines3/common/vec_env/base_vec_env.py", line 206, in step
return self.step_wait()
File "/home/user/project/.venv/lib/python3.10/site-packages/stable_baselines3/common/vec_env/dummy_vec_env.py", line 58, in step_wait
obs, self.buf_rews[env_idx], terminated, truncated, self.buf_infos[env_idx] = self.envs[env_idx].step(
File "/home/user/project/.venv/lib/python3.10/site-packages/stable_baselines3/common/monitor.py", line 94, in step
observation, reward, terminated, truncated, info = self.env.step(action)
File "/home/user/project/.venv/lib/python3.10/site-packages/gymnasium/wrappers/order_enforcing.py", line 56, in step
return self.env.step(action)
File "/home/user/project/.venv/lib/python3.10/site-packages/gymnasium/wrappers/env_checker.py", line 51, in step
return self.env.step(action)
File "/home/user/project/src/env/fbp_mission_env.py", line 285, in step
xx_f = np.array(jl_main.bcr4bpPropagation(np.float64(xx_0), np.array([tau_0, tau_f], dtype=np.float64), self._bcr4bp_env_jl, True), np.float32)
File "/home/user/.julia/packages/PythonCall/Nr75f/src/JlWrap/array.jl", line 338, in __array__
arr = self._jl_callmethod($(pyjl_methodnum(pyjlarray_array__array)))
juliacall.JuliaError: MethodError: no method matching pyjlarray_array__array(::Nothing)
The function pyjlarray_array__array exists, but no method is defined for this combination of argument types.
Closest candidates are:
pyjlarray_array__array(!Matched::AbstractArray)
@ PythonCall ~/.julia/packages/PythonCall/Nr75f/src/JlWrap/array.jl:277
Stacktrace:
[1] _pyjl_callmethod(f::Any, self_::Ptr{PythonCall.C.PyObject}, args_::Ptr{PythonCall.C.PyObject}, nargs::Int64)
@ PythonCall.JlWrap ~/.julia/packages/PythonCall/Nr75f/src/JlWrap/base.jl:62
[2] _pyjl_callmethod(o::Ptr{PythonCall.C.PyObject}, args::Ptr{PythonCall.C.PyObject})
@ PythonCall.JlWrap.Cjl ~/.julia/packages/PythonCall/Nr75f/src/JlWrap/C.jl:63
Another segmentation fault that happened is (this time it segmented closing the debugger)
Fatal Python error: Segmentation fault
Current thread 0x00007f966a5fd640 (most recent call first):
Garbage-collecting
File "/home/user/project/.venv/lib/python3.10/site-packages/rich/table.py", line 668 in _get_cells
File "/home/user/project/.venv/lib/python3.10/site-packages/rich/table.py", line 757 in _render
File "/home/user/project/.venv/lib/python3.10/site-packages/rich/table.py", line 515 in __rich_console__
File "/home/user/project/.venv/lib/python3.10/site-packages/rich/console.py", line 1326 in render
File "/home/user/project/.venv/lib/python3.10/site-packages/rich/console.py", line 1330 in render
File "/home/user/project/.venv/lib/python3.10/site-packages/rich/segment.py", line 305 in split_and_crop_lines
File "/home/user/project/.venv/lib/python3.10/site-packages/rich/console.py", line 1366 in render_lines
File "/home/user/project/.venv/lib/python3.10/site-packages/rich/live_render.py", line 87 in __rich_console__
File "/home/user/project/.venv/lib/python3.10/site-packages/rich/console.py", line 1326 in render
File "/home/user/project/.venv/lib/python3.10/site-packages/rich/console.py", line 1705 in print
File "/home/user/project/.venv/lib/python3.10/site-packages/rich/live.py", line 242 in refresh
File "/home/user/project/.venv/lib/python3.10/site-packages/rich/live.py", line 32 in run
File "/usr/lib/python3.10/threading.py", line 1016 in _bootstrap_inner
File "/usr/lib/python3.10/threading.py", line 973 in _bootstrap
File "/home/user/.vscode-server/extensions/ms-python.debugpy-2024.12.0-linux-x64/bundled/libs/debugpy/_vendored/pydevd/_pydev_bundle/pydev_monkey.py", line 1134 in __call__
Thread 0x00007f966adfe640 (most recent call first):
File "/usr/lib/python3.10/threading.py", line 324 in wait
File "/usr/lib/python3.10/threading.py", line 607 in wait
File "/home/user/project/.venv/lib/python3.10/site-packages/tqdm/_monitor.py", line 60 in run
File "/usr/lib/python3.10/threading.py", line 1016 in _bootstrap_inner
File "/usr/lib/python3.10/threading.py", line 973 in _bootstrap
File "/home/user/.vscode-server/extensions/ms-python.debugpy-2024.12.0-linux-x64/bundled/libs/debugpy/_vendored/pydevd/_pydev_bundle/pydev_monkey.py", line 1134 in __call__
Thread 0x00007f966b5ff640 (most recent call first):
File "/usr/lib/python3.10/threading.py", line 324 in wait
File "/usr/lib/python3.10/queue.py", line 180 in get
File "/home/user/project/.venv/lib/python3.10/site-packages/tensorboard/summary/writer/event_file_writer.py", line 269 in _run
File "/home/user/project/.venv/lib/python3.10/site-packages/tensorboard/summary/writer/event_file_writer.py", line 244 in run
File "/usr/lib/python3.10/threading.py", line 1016 in _bootstrap_inner
File "/usr/lib/python3.10/threading.py", line 973 in _bootstrap
File "/home/user/.vscode-server/extensions/ms-python.debugpy-2024.12.0-linux-x64/bundled/libs/debugpy/_vendored/pydevd/_pydev_bundle/pydev_monkey.py", line 1134 in __call__
Thread 0x00007f9846ffd640 (most recent call first):
File "/usr/lib/python3.10/threading.py", line 324 in wait
File "/usr/lib/python3.10/threading.py", line 607 in wait
File "/home/user/.vscode-server/extensions/ms-python.debugpy-2024.12.0-linux-x64/bundled/libs/debugpy/_vendored/pydevd/pydevd.py", line 325 in _on_run
File "/home/user/.vscode-server/extensions/ms-python.debugpy-2024.12.0-linux-x64/bundled/libs/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_daemon_thread.py", line 53 in run
File "/usr/lib/python3.10/threading.py", line 1016 in _bootstrap_inner
File "/usr/lib/python3.10/threading.py", line 973 in _bootstrap
Thread 0x00007f98477fe640 (most recent call first):
File "/usr/lib/python3.10/threading.py", line 324 in wait
File "/usr/lib/python3.10/threading.py", line 607 in wait
File "/home/user/.vscode-server/extensions/ms-python.debugpy-2024.12.0-linux-x64/bundled/libs/debugpy/_vendored/pydevd/pydevd.py", line 280 in _on_run
File "/home/user/.vscode-server/extensions/ms-python.debugpy-2024.12.0-linux-x64/bundled/libs/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_daemon_thread.py", line 53 in run
File "/usr/lib/python3.10/threading.py", line 1016 in _bootstrap_inner
File "/usr/lib/python3.10/threading.py", line 973 in _bootstrap
Thread 0x00007f9847fff640 (most recent call first):
File "/home/user/.vscode-server/extensions/ms-python.debugpy-2024.12.0-linux-x64/bundled/libs/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_comm.py", line 227 in _read_line
File "/home/user/.vscode-server/extensions/ms-python.debugpy-2024.12.0-linux-x64/bundled/libs/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_comm.py", line 245 in _on_run
File "/home/user/.vscode-server/extensions/ms-python.debugpy-2024.12.0-linux-x64/bundled/libs/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_daemon_thread.py", line 53 in run
File "/usr/lib/python3.10/threading.py", line 1016 in _bootstrap_inner
File "/usr/lib/python3.10/threading.py", line 973 in _bootstrap
Thread 0x00007f984cf10640 (most recent call first):
File "/usr/lib/python3.10/threading.py", line 324 in wait
File "/usr/lib/python3.10/queue.py", line 180 in get
File "/home/user/.vscode-server/extensions/ms-python.debugpy-2024.12.0-linux-x64/bundled/libs/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_comm.py", line 390 in _on_run
File "/home/user/.vscode-server/extensions/ms-python.debugpy-2024.12.0-linux-x64/bundled/libs/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_daemon_thread.py", line 53 in run
File "/usr/lib/python3.10/threading.py", line 1016 in _bootstrap_inner
File "/usr/lib/python3.10/threading.py", line 973 in _bootstrap
Thread 0x00007f984e547000 (most recent call first):
File "/usr/lib/python3.10/threading.py", line 324 in wait
File "/usr/lib/python3.10/threading.py", line 607 in wait
File "/home/user/.vscode-server/extensions/ms-python.debugpy-2024.12.0-linux-x64/bundled/libs/debugpy/_vendored/pydevd/pydevd.py", line 2266 in _do_wait_suspend
File "/home/user/.vscode-server/extensions/ms-python.debugpy-2024.12.0-linux-x64/bundled/libs/debugpy/_vendored/pydevd/pydevd.py", line 2197 in do_wait_suspend
File "/home/user/.vscode-server/extensions/ms-python.debugpy-2024.12.0-linux-x64/bundled/libs/debugpy/_vendored/pydevd/pydevd.py", line 2384 in do_stop_on_unhandled_exception
File "/home/user/.vscode-server/extensions/ms-python.debugpy-2024.12.0-linux-x64/bundled/libs/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_breakpoints.py", line 174 in stop_on_unhandled_exception
File "/usr/lib/python3.10/runpy.py", line 196 in _run_module_as_main
Extension modules: _pydevd_bundle.pydevd_cython, numpy.core._multiarray_umath, numpy.core._multiarray_tests, numpy.linalg._umath_linalg, numpy.fft._pocketfft_internal, numpy.random._common, numpy.random.bit_generator, numpy.random._bounded_integers, numpy.random._mt19937, numpy.random.mtrand, numpy.random._philox, numpy.random._pcg64, numpy.random._sfc64, numpy.random._generator, scipy._lib._ccallback_c, scipy.sparse._sparsetools, _csparsetools, scipy.sparse._csparsetools, scipy.linalg._fblas, scipy.linalg._flapack, scipy.linalg.cython_lapack, scipy.linalg._cythonized_array_utils, scipy.linalg._solve_toeplitz, scipy.linalg._decomp_lu_cython, scipy.linalg._matfuncs_sqrtm_triu, scipy.linalg.cython_blas, scipy.linalg._matfuncs_expm, scipy.linalg._decomp_update, scipy.sparse.linalg._dsolve._superlu, scipy.sparse.linalg._eigen.arpack._arpack, scipy.sparse.linalg._propack._spropack, scipy.sparse.linalg._propack._dpropack, scipy.sparse.linalg._propack._cpropack, scipy.sparse.linalg._propack._zpropack, scipy.sparse.csgraph._tools, scipy.sparse.csgraph._shortest_path, scipy.sparse.csgraph._traversal, scipy.sparse.csgraph._min_spanning_tree, scipy.sparse.csgraph._flow, scipy.sparse.csgraph._matching, scipy.sparse.csgraph._reordering, scipy.io.matlab._mio_utils, scipy.io.matlab._streams, scipy.io.matlab._mio5_utils, scipy.special._ufuncs_cxx, scipy.special._ufuncs, scipy.special._specfun, scipy.special._comb, scipy.special._ellip_harm_2, scipy.integrate._odepack, scipy.integrate._quadpack, scipy.integrate._vode, scipy.integrate._dop, scipy.integrate._lsoda, scipy.optimize._group_columns, scipy._lib.messagestream, scipy.optimize._trlib._trlib, scipy.optimize._lbfgsb, _moduleTNC, scipy.optimize._moduleTNC, scipy.optimize._cobyla, scipy.optimize._slsqp, scipy.optimize._minpack, scipy.optimize._lsq.givens_elimination, scipy.optimize._zeros, scipy.optimize._highs.cython.src._highs_wrapper, scipy.optimize._highs._highs_wrapper, scipy.optimize._highs.cython.src._highs_constants, scipy.optimize._highs._highs_constants, scipy.linalg._interpolative, scipy.optimize._bglu_dense, scipy.optimize._lsap, scipy.spatial._ckdtree, scipy.spatial._qhull, scipy.spatial._voronoi, scipy.spatial._distance_wrap, scipy.spatial._hausdorff, scipy.spatial.transform._rotation, scipy.optimize._direct, torch._C, torch._C._dynamo.autograd_compiler, torch._C._dynamo.eval_frame, torch._C._dynamo.guards, torch._C._dynamo.utils, torch._C._fft, torch._C._linalg, torch._C._nested, torch._C._nn, torch._C._sparse, torch._C._special, google._upb._message, PIL._imaging, kiwisolver._cext, pyarrow.lib, pandas._libs.tslibs.ccalendar, pandas._libs.tslibs.np_datetime, pandas._libs.tslibs.dtypes, pandas._libs.tslibs.base, pandas._libs.tslibs.nattype, pandas._libs.tslibs.timezones, pandas._libs.tslibs.fields, pandas._libs.tslibs.timedeltas, pandas._libs.tslibs.tzconversion, pandas._libs.tslibs.timestamps, pandas._libs.properties, pandas._libs.tslibs.offsets, pandas._libs.tslibs.strptime, pandas._libs.tslibs.parsing, pandas._libs.tslibs.conversion, pandas._libs.tslibs.period, pandas._libs.tslibs.vectorized, pandas._libs.ops_dispatch, pandas._libs.missing, pandas._libs.hashtable, pandas._libs.algos, pandas._libs.interval, pandas._libs.lib, pyarrow._compute, pandas._libs.ops, pandas._libs.hashing, pandas._libs.arrays, pandas._libs.tslib, pandas._libs.sparse, pandas._libs.internals, pandas._libs.indexing, pandas._libs.index, pandas._libs.writers, pandas._libs.join, pandas._libs.window.aggregations, pandas._libs.window.indexers, pandas._libs.reshape, pandas._libs.groupby, pandas._libs.json, pandas._libs.parsers, pandas._libs.testing (total: 135)
Another time, exception has been returned in the Julia array wrapper. here I tried to use deepcopy before invoking Julia:
Exception has occurred: JuliaError
MethodError: no method matching pyjlarray_array__array(::Nothing)
The function `pyjlarray_array__array` exists, but no method is defined for this combination of argument types.
Closest candidates are:
pyjlarray_array__array(!Matched::AbstractArray)
@ PythonCall ~/.julia/packages/PythonCall/Nr75f/src/JlWrap/array.jl:277
Stacktrace:
[1] _pyjl_callmethod(f::Any, self_::Ptr{PythonCall.C.PyObject}, args_::Ptr{PythonCall.C.PyObject}, nargs::Int64)
@ PythonCall.JlWrap ~/.julia/packages/PythonCall/Nr75f/src/JlWrap/base.jl:62
[2] _pyjl_callmethod(o::Ptr{PythonCall.C.PyObject}, args::Ptr{PythonCall.C.PyObject})
@ PythonCall.JlWrap.Cjl ~/.julia/packages/PythonCall/Nr75f/src/JlWrap/C.jl:63
File "/home/user/.julia/packages/PythonCall/Nr75f/src/JlWrap/array.jl", line 338, in __array__
arr = self._jl_callmethod($(pyjl_methodnum(pyjlarray_array__array)))
File "/home/user/project/src/env/fbp_mission_env.py", line 140, in reset
xx_0 = np.array(jl_main.bcr4bpPropagation(deepcopy(xx_0), deepcopy([time, time + self._dt_step]), self._bcr4bp_env_jl, True), np.float64)
File "/home/user/project/scripts/train.py", line 83, in <module>
model.learn(total_timesteps=1e6,
juliacall.JuliaError: MethodError: no method matching pyjlarray_array__array(::Nothing)
The function `pyjlarray_array__array` exists, but no method is defined for this combination of argument types.
Closest candidates are:
pyjlarray_array__array(!Matched::AbstractArray)
@ PythonCall ~/.julia/packages/PythonCall/Nr75f/src/JlWrap/array.jl:277
Stacktrace:
[1] _pyjl_callmethod(f::Any, self_::Ptr{PythonCall.C.PyObject}, args_::Ptr{PythonCall.C.PyObject}, nargs::Int64)
@ PythonCall.JlWrap ~/.julia/packages/PythonCall/Nr75f/src/JlWrap/base.jl:62
[2] _pyjl_callmethod(o::Ptr{PythonCall.C.PyObject}, args::Ptr{PythonCall.C.PyObject})
@ PythonCall.JlWrap.Cjl ~/.julia/packages/PythonCall/Nr75f/src/JlWrap/C.jl:63
As I am not a computer expert, I may have made some very stupid errors, especially concerning poor management of variables. Hope you can suggest me how to solve this problem and make my code more robust.
Thanks a lot!
The text was updated successfully, but these errors were encountered:
I am trying to train a RL agent using SB3, torch, and Gymnasium. I use a linux environment through wsl2 (Ubuntu-22.04), and VisualStudio Code. To speed up the step phase in my environment, I invoke Julia passing through juliacall to propagate the dynamics of my problem. I report here the main points of my implementation.
Problem dynamics in Julia: bcr4bp.jl
RL Gymnasium environment mission_env.py
When I run my code, the training works fine for some time. However, at an apparently random point, it segments (or returns exceptions). The error seems to be related to the Python to Julia conversion of inputs prior invoking jl_main.bcr4bpPropagation or to the conversion of the return from Julia. If running in debug mode, when the code returns exceptions I am able to run the faulty line in the debug console with no problems
xx_f = np.array(jl_main.bcr4bpPropagation(np.float64(xx_0), np.array([tau_0, tau_f], dtype=np.float64), self._bcr4bp_env_jl, True), np.float64))
and I cannot explain this behavior. I guess it is related to some bad management of memory addresses. I also started thinking that maybe there are some limitation in using WSL in this context. I am not using multi-threads training / vectorized environments, so everything should be quite smooth. I tried different approaches such as, for example, converting the inputs to Julia format before calling the function. This problem does not appear if using the scipy integrate module rather than Julia. Therefore, I guess this segmentation fault is due to some troubles in calling Julia during run-time.
I report for reference the segfault_log file from faulthandler (this is only and example, as the segmentation always happens at the same point, but for different reasons. Note that in this case I was able to run the faulty line in the debug console)
Another segmentation fault that happened is (this time it segmented closing the debugger)
Another time, exception has been returned in the Julia array wrapper. here I tried to use deepcopy before invoking Julia:
As I am not a computer expert, I may have made some very stupid errors, especially concerning poor management of variables. Hope you can suggest me how to solve this problem and make my code more robust.
Thanks a lot!
The text was updated successfully, but these errors were encountered: