From 8f5d288a3f1f264a3ce6a4a8cdd411b19c8c2f0a Mon Sep 17 00:00:00 2001 From: Sam Anklesaria <61420+samanklesaria@users.noreply.github.com> Date: Mon, 1 Apr 2024 08:39:29 -0500 Subject: [PATCH] Apply suggestions from code review Co-authored-by: Will Tebbutt --- src/ApproximateGPs.jl | 3 +-- src/NearestNeighborsModule.jl | 26 +++++++++++--------------- test/NearestNeighborsModule.jl | 3 +-- 3 files changed, 13 insertions(+), 19 deletions(-) diff --git a/src/ApproximateGPs.jl b/src/ApproximateGPs.jl index 476f58e8..49b7f92d 100644 --- a/src/ApproximateGPs.jl +++ b/src/ApproximateGPs.jl @@ -20,8 +20,7 @@ include("LaplaceApproximationModule.jl") build_laplace_objective, build_laplace_objective! include("NearestNeighborsModule.jl") -@reexport using .NearestNeighborsModule: - NearestNeighbors +@reexport using .NearestNeighborsModule: NearestNeighbors include("deprecations.jl") diff --git a/src/NearestNeighborsModule.jl b/src/NearestNeighborsModule.jl index 59519331..47cf5b50 100644 --- a/src/NearestNeighborsModule.jl +++ b/src/NearestNeighborsModule.jl @@ -4,7 +4,7 @@ using ChainRulesCore using KernelFunctions, LinearAlgebra, SparseArrays, AbstractGPs """ -Constructs the matrix ``B`` for which ``f = Bf + \epsilon`` were ``f`` +Constructs the matrix ``B`` for which ``f = Bf + \epsilon`` where ``f`` are the values of the GP and ``\epsilon`` is a vector of zero mean independent Gaussian noise. This matrix builds the conditional mean for function value ``f_i`` @@ -21,11 +21,11 @@ function make_B(pts::AbstractVector{T}, k::Int, kern::Kernel) where {T} end function make_rows(pts::AbstractVector{T}, k::Int, kern::Kernel) where {T} - [make_row(kern, pts[max(1, i-k):i-1], pts[i]) for i in 2:length(pts)] + return [make_row(kern, pts[max(1, i-k):i-1], pts[i]) for i in 2:length(pts)] end function make_row(kern::Kernel, ns::AbstractVector{T}, p::T) where {T} - kernelmatrix(kern,ns) \ kern.(ns, p) + return kernelmatrix(kern,ns) \ kern.(ns, p) end function make_js(rows, k) @@ -35,9 +35,7 @@ function make_js(rows, k) end for (row, i) in zip(rows, 2:(length(rows)+1))] end -function make_is(js) - [fill(i, length(col_ix)) for (col_ix, i) in zip(js, 2:(length(js)+1))] -end +make_is(js) = [fill(i, length(col_ix)) for (col_ix, i) in zip(js, 2:(length(js)+1))] """ Constructs the diagonal covariance matrix for noise vector ``\epsilon`` @@ -45,7 +43,7 @@ for which ``f = Bf + \epsilon``. See equation (10) of (Datta, A. Nearest neighbor sparse Cholesky matrices in spatial statistics. 2022). """ -function make_F(pts::AbstractVector{T}, k::Int, kern::Kernel) where {T} +function make_F(pts::AbstractVector, k::Int, kern::Kernel) n = length(pts) vals = [ begin @@ -88,13 +86,11 @@ AbstractGPs.diag_Xt_invA_X(A::InvRoot, X::AbstractVecOrMat) = AbstractGPs.diag_A AbstractGPs.Xt_invA_X(A::InvRoot, X::AbstractVecOrMat) = AbstractGPs.At_A(A.U' * X) -""" -Make a sparse approximation of the square root of the precision matrix -""" +# Make a sparse approximation of the square root of the precision matrix function approx_root_prec(x::AbstractVector, k::Int, kern::Kernel) F = make_F(x, k, kern) B = make_B(x, k, kern) - UpperTriangular((I - B)' * inv(sqrt(F))) + return UpperTriangular((I - B)' * inv(sqrt(F))) end function AbstractGPs.posterior(nn::NearestNeighbors, fx::AbstractGPs.FiniteGP, y::AbstractVector) @@ -107,10 +103,10 @@ function AbstractGPs.posterior(nn::NearestNeighbors, fx::AbstractGPs.FiniteGP, y end function API.approx_lml(nn::NearestNeighbors, fx::AbstractGPs.FiniteGP, y::AbstractVector) - post = posterior(nn, fx, y) - quadform = post.data.α' * post.data.δ - ld = logdet(post.data.C) - return -0.5 * ld -(length(y)/2) * log(2 * pi) - 0.5 * quadform + post = posterior(nn, fx, y) + quadform = post.data.α' * post.data.δ + ld = logdet(post.data.C) + return -(ld + length(y) * eltype(y)(log2π) + quadform) / 2 end end diff --git a/test/NearestNeighborsModule.jl b/test/NearestNeighborsModule.jl index c77bb67a..444f9d84 100644 --- a/test/NearestNeighborsModule.jl +++ b/test/NearestNeighborsModule.jl @@ -6,8 +6,7 @@ y = sin.(x) @testset "Using all neighbors is the same as the exact GP" begin - opt_pred = mean_and_cov(posterior(NearestNeighbors(length(x) - 1), - fx, y)(x2)) + opt_pred = mean_and_cov(posterior(NearestNeighbors(length(x) - 1), fx, y)(x2)) pred = mean_and_cov(posterior(fx, y)(x2)) for i in 1:2 @test all(isapprox.(opt_pred[i], pred[i]; atol=1e-4))