API reference
DifferentiationInterfaceTest
— ModuleDifferentiationInterfaceTest
Testing and benchmarking utilities for automatic differentiation in Julia.
Exports
DerivativeScenario
DifferentiationBenchmarkDataRow
GradientScenario
HVPScenario
HessianScenario
JacobianScenario
PullbackScenario
PushforwardScenario
Scenario
SecondDerivativeScenario
benchmark_differentiation
component_scenarios
default_scenarios
gpu_scenarios
sparse_scenarios
static_scenarios
test_differentiation
Entry points
DifferentiationInterfaceTest.test_differentiation
— Functiontest_differentiation(
+ backends::Vector{<:ADTypes.AbstractADType};
+ ...
+)
+test_differentiation(
+ backends::Vector{<:ADTypes.AbstractADType},
+ scenarios::Vector{<:Scenario};
+ correctness,
+ type_stability,
+ call_count,
+ sparsity,
+ detailed,
+ input_type,
+ output_type,
+ first_order,
+ second_order,
+ onearg,
+ twoarg,
+ inplace,
+ outofplace,
+ excluded,
+ logging,
+ isequal,
+ isapprox,
+ atol,
+ rtol
+)
+
Cross-test a list of backends
on a list of scenarios
, running a variety of different tests.
Default arguments
scenarios::Vector{<:Scenario}
: the output ofdefault_scenarios()
Keyword arguments
Testing:
correctness=true
: whether to compare the differentiation results with the theoretical values specified in each scenariotype_stability=false
: whether to check type stability with JET.jl (thanks toJET.@test_opt
)sparsity
: whether to check sparsity of the jacobian / hessiandetailed=false
: whether to print a detailed or condensed test log
Filtering:
input_type=Any
,output_type=Any
: restrict scenario inputs / outputs to subtypes of thisfirst_order=true
,second_order=true
: include first order / second order operatorsonearg=true
,twoarg=true
: include one-argument / two-argument functionsinplace=true
,outofplace=true
: include in-place / out-of-place operators
Options:
logging=false
: whether to log progressisequal=isequal
: function used to compare objects exactly, with the standard signatureisequal(x, y)
isapprox=isapprox
: function used to compare objects approximately, with the standard signatureisapprox(x, y; atol, rtol)
atol=0
: absolute precision for correctness testing (when comparing to the reference outputs)rtol=1e-3
: relative precision for correctness testing (when comparing to the reference outputs)
test_differentiation(
+ backend::ADTypes.AbstractADType,
+ args...;
+ kwargs...
+)
+
Shortcut for a single backend.
DifferentiationInterfaceTest.benchmark_differentiation
— Functionbenchmark_differentiation(
+ backends::Vector{<:ADTypes.AbstractADType},
+ scenarios::Vector{<:Scenario};
+ input_type,
+ output_type,
+ first_order,
+ second_order,
+ onearg,
+ twoarg,
+ inplace,
+ outofplace,
+ excluded,
+ logging
+) -> DataFrames.DataFrame
+
Benchmark a list of backends
for a list of operators
on a list of scenarios
.
The object returned is a DataFrames.DataFrame
where each column corresponds to a field of DifferentiationBenchmarkDataRow
.
The keyword arguments available here have the same meaning as those in test_differentiation
.
DifferentiationInterfaceTest.DifferentiationBenchmarkDataRow
— TypeDifferentiationBenchmarkDataRow
Ad-hoc storage type for differentiation benchmarking results.
If you have a vector rows::Vector{DifferentiationBenchmarkDataRow}
, you can turn it into a DataFrame
as follows:
using DataFrames
+
+df = DataFrame(rows)
The resulting DataFrame
will have one column for each of the following fields.
Fields
backend::ADTypes.AbstractADType
: backend used for benchmarkingscenario::Scenario
: scenario used for benchmarkingoperator::Symbol
: differentiation operator used for benchmarking, e.g.:gradient
or:hessian
calls::Int64
: number of calls to the differentiated function for one call to the operatorsamples::Int64
: number of benchmarking samples takenevals::Int64
: number of evaluations used for averaging in each sampletime::Float64
: minimum runtime over all samples, in secondsallocs::Float64
: minimum number of allocations over all samplesbytes::Float64
: minimum memory allocated over all samples, in bytesgc_fraction::Float64
: minimum fraction of time spent in garbage collection over all samples, between 0.0 and 1.0compile_fraction::Float64
: minimum fraction of time spent compiling over all samples, between 0.0 and 1.0
See the documentation of Chairmarks.jl for more details on the measurement fields.
Pre-made scenario lists
The precise contents of the scenario lists are not part of the API, only their existence.
DifferentiationInterfaceTest.default_scenarios
— Functiondefault_scenarios(rng=Random.default_rng())
Create a vector of Scenario
s with standard array types.
DifferentiationInterfaceTest.sparse_scenarios
— Functionsparse_scenarios(rng=Random.default_rng())
Create a vector of Scenario
s with sparse array types, focused on sparse Jacobians and Hessians.
DifferentiationInterfaceTest.component_scenarios
— Functioncomponent_scenarios(rng=Random.default_rng())
Create a vector of Scenario
s with component array types from ComponentArrays.jl.
This function requires ComponentArrays.jl to be loaded (it is implemented in a package extension).
DifferentiationInterfaceTest.gpu_scenarios
— Functiongpu_scenarios(rng=Random.default_rng())
Create a vector of Scenario
s with GPU array types from JLArrays.jl.
This function requires JLArrays.jl to be loaded (it is implemented in a package extension).
DifferentiationInterfaceTest.static_scenarios
— Functionstatic_scenarios(rng=Random.default_rng())
Create a vector of Scenario
s with static array types from StaticArrays.jl.
This function requires StaticArrays.jl to be loaded (it is implemented in a package extension).
Scenario types
DifferentiationInterfaceTest.Scenario
— TypeScenario{op,args,pl}
Store a testing scenario composed of a function and its input + output for a given operator.
This generic type should never be used directly: use the specific constructor corresponding to the operator you want to test, or a predefined list of scenarios.
Constructors
PushforwardScenario
PullbackScenario
DerivativeScenario
GradientScenario
JacobianScenario
SecondDerivativeScenario
HVPScenario
HessianScenario
Type parameters
op
: one of:pushforward
,:pullback
,:derivative
,:gradient
,:jacobian
,:second_derivative
,:hvp
,:hessian
args
: either1
(forf(x) = y
) or2
(forf!(y, x) = nothing
)pl
: either:inplace
or:outofplace
Fields
f::Any
: functionf
(ifargs==1
) orf!
(ifargs==2
) to applyx::Any
: primal inputy::Any
: primal outputseed::Any
: seed for pushforward, pullback or HVPres1::Any
: first-order result of the operatorres2::Any
: second-order result of the operator (when it makes sense)
Note that the res1
and res2
fields are given more meaningful names in the keyword arguments of each specialized constructor. For example:
- the keyword
grad
ofGradientScenario
becomesres1
- the keyword
hess
ofHessianScenario
becomesres2
, and the keywordgrad
becomesres1
DifferentiationInterfaceTest.PushforwardScenario
— FunctionPushforwardScenario(f; x, y, dx, dy, nb_args, place)
+
Construct a Scenario
to test pushforward
and its variants.
DifferentiationInterfaceTest.PullbackScenario
— FunctionPullbackScenario(f; x, y, dy, dx, nb_args, place)
+
Construct a Scenario
to test pullback
and its variants.
DifferentiationInterfaceTest.DerivativeScenario
— FunctionDerivativeScenario(f; x, y, der, nb_args, place)
+
Construct a Scenario
to test derivative
and its variants.
DifferentiationInterfaceTest.GradientScenario
— FunctionGradientScenario(f; x, y, grad, nb_args, place)
+
Construct a Scenario
to test gradient
and its variants.
DifferentiationInterfaceTest.JacobianScenario
— FunctionJacobianScenario(f; x, y, jac, nb_args, place)
+
Construct a Scenario
to test jacobian
and its variants.
DifferentiationInterfaceTest.SecondDerivativeScenario
— FunctionSecondDerivativeScenario(f; x, y, der, der2, nb_args, place)
+
Construct a Scenario
to test second_derivative
and its variants.
DifferentiationInterfaceTest.HVPScenario
— FunctionHVPScenario(f; x, y, dx, grad, dg, nb_args, place)
+
Construct a Scenario
to test hvp
and its variants.
DifferentiationInterfaceTest.HessianScenario
— FunctionHessianScenario(f; x, y, grad, hess, nb_args, place)
+
Construct a Scenario
to test hessian
and its variants.
Internals
This is not part of the public API.
DifferentiationInterfaceTest.AutoZeroForward
— TypeAutoZeroForward <: ADTypes.AbstractADType
Trivial backend that sets all derivatives to zero. Used in testing and benchmarking.
DifferentiationInterfaceTest.AutoZeroReverse
— TypeAutoZeroReverse <: ADTypes.AbstractADType
Trivial backend that sets all derivatives to zero. Used in testing and benchmarking.
DifferentiationInterfaceTest.add_batchified!
— Methodadd_batchified!(scens::AbstractVector{<:Scenario})
Add batchified versions to scens
of its scenarios which support it (pushforward, pullback and HVP).
DifferentiationInterfaceTest.allocfree_scenarios
— Functionallocfree_scenarios(rng::AbstractRNG=default_rng())
Create a vector of Scenario
s with functions that do not allocate.
At the moment, some second-order scenarios are excluded.
DifferentiationInterfaceTest.flux_isapprox
— Functionflux_isapprox(x, y; atol, rtol)
Approximate comparison function to use in correctness tests with gradients of Flux.jl networks.
DifferentiationInterfaceTest.flux_isequal
— Functionflux_isequal(x, y)
Exact comparison function to use in correctness tests with gradients of Flux.jl networks.
DifferentiationInterfaceTest.flux_scenarios
— Functionflux_scenarios(rng=Random.default_rng())
Create a vector of Scenario
s with neural networks from Flux.jl.
This function requires FiniteDifferences.jl and Flux.jl to be loaded (it is implemented in a package extension).
These scenarios are still experimental and not part of the public API. Their ground truth values are computed with finite differences, and thus subject to imprecision.
DifferentiationInterfaceTest.lux_isapprox
— Functionlux_isapprox(x, y; atol, rtol)
Approximate comparison function to use in correctness tests with gradients of Lux.jl networks.
DifferentiationInterfaceTest.lux_isequal
— Functionlux_isequal(x, y)
Exact comparison function to use in correctness tests with gradients of Lux.jl networks.
DifferentiationInterfaceTest.lux_scenarios
— Functionlux_scenarios(rng=Random.default_rng())
Create a vector of Scenario
s with neural networks from Lux.jl.
This function requires ComponentArrays.jl, FiniteDiff.jl, Lux.jl and LuxTestUtils.jl to be loaded (it is implemented in a package extension).
These scenarios are still experimental and not part of the public API. Their ground truth values are computed with finite differences, and thus subject to imprecision.
DifferentiationInterfaceTest.make_closure
— Methodmake_closure(scen::Scenario)
Return a new Scenario
with a modified function f
or f!
that closes over differentiable data.
DifferentiationInterfaceTest.test_allocfree
— Methodtest_allocfree(benchmark_data::DataFrame)
Test that every row in benchmark_data
which is not a preparation row has zero allocation.