Skip to content

Latest commit

 

History

History
562 lines (485 loc) · 33.1 KB

README.md

File metadata and controls

562 lines (485 loc) · 33.1 KB

Projected Task-Specific Layers for Multi-Task Reinforcement Learning

paper | mtrl repo | mtrl docs

In proceedings - IEEE ICRA 2024

Authors: Josselin Somerville Roberts, Julia Di

Abstract

Multi-task reinforcement learning could enable robots to scale across a wide variety of manipulation tasks in homes and workplaces. However, generalizing from one task to another and mitigating negative task interference still remains a challenge. Addressing this challenge by successfully sharing information across tasks will depend on how well the structure underlying the tasks is captured. In this work, we introduce our new architecture, Projected Task-Specific Layers (PTSL), that leverages a common policy with dense task-specific corrections through task-specific layers to better express shared and variable task information. We then show that our model outperforms the state of the art on the MT10 and MT50 benchmarks of Meta-World consisting of 10 and 50 goal-conditioned tasks for a Sawyer arm.

Table of contents

Installation

We recommend using conda to install this as we were not able to install the package using facebook's isntructions. Instead we provide a custom environment.yml to install it with conda.

If you are on an AWS EC2 instance, you can run our script: aws_setup.sh that should handle everything for you.

Here are the step you will have to follow (from this directory) to install the repo:

  • Instal Mujoco (see below). If the website is down (which happenned in the past) you can instead unzip the provided .mujoco.zip of this repo and place it in your home directory. Otherwise, run the following commands:
# Install Mujoco
pwd=`pwd` # Save current path
cd /home/ubuntu
mkdir .mujoco
cd .mujoco
wget https://www.roboti.us/file/mjkey.txt # Key
wget https://www.roboti.us/download/mujoco200_linux.zip # Mujoco 200
yes y | sudo apt-get install unzip
unzip mujoco200_linux.zip
mv mujoco200_linux mujoco200
rm -r -f mujoco200_linux.zip
wget https://mujoco.org/download/mujoco210-linux-x86_64.tar.gz # Mujoco 210 (Not needed)
tar -xvf mujoco210-linux-x86_64.tar.gz
rm -r -f mujoco210-linux-x86_64.tar.gz
cd $pwd
  • You should then add the following lines to your ~/.bashrc (or ~/.zshrc if you use zsh) toc omplete the installation:
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/.mujoco/mujoco200/bin' >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib/nvidia' >> ~/.bashrc
source ~/.bashrc
  • Create the conda environment mtrl and activate it. This contains most necessary packages for the project except a few one that you will have to install manually (see below). This may take up some time.
# Create conda env and activate it
conda env create -f environment.yml
conda init bash
source ~/.bashrc
conda activate mtrl
  • Finish installing mujoco, this will use apt to install some packages.
# Finish installing mujoco
yes y | sudo apt update
yes y | sudo apt-get install patchelf
yes y | sudo apt-get install libglew-dev
yes y | sudo apt install libosmesa6-dev libgl1-mesa-glx libglfw3

# Finish mujoco installs
yes y | pip install "cython<3"
yes y | pip install lockfile
yes y | pip install gym==0.21.0
# You can try to install mujoco-py version 2.0.2.13
# but this often generates this error:
# mujoco_py/cymj.pyx:92:23: Cannot assign type 'void (const char *) except * nogil' to 'void (*)(const char *) noexcept nogil'. Exception values are incompatible. Suggest adding 'noexcept' to type 'void (const char *) except * nogil'.
# So instead of this:
# yes y | pip install mujoco-py==2.0.2.13
# We advise to downgrade to version 2.0.2.5:
yes y | pip install mujoco-py==2.0.2.5
yes y | pip install scipy==1.9.1
yes y | pip install protobuf==3.20.0

At this point, if you run into issues with the installation of gym==0.21.0 or mujoco-py, try running the following commands:

# Install GCC 7
sudo add-apt-repository ppa:jonathonf/gcc
sudo apt-get update
sudo apt install gcc-7

sudo apt-get install patchelf
sudo apt-get install libglu1-mesa-dev mesa-common-dev
  • Finally install the last dependencies:
# Additional installs (metaworld, mtenv)
yes y | pip install git+https://github.com/Farama-Foundation/Metaworld.git@af8417bfc82a3e249b4b02156518d775f29eb28
yes y | pip install "mtenv[metaworld]"
yes y | pip install git+https://github.com/JosselinSomervilleRoberts/JossPythonToolbox.git
yes y | pip install wandb

You can check your installation by running:

PYTHONPATH=. python3 -u main.py setup=metaworld agent=state_sac env=metaworld-mt10 agent.multitask.num_envs=10 agent.multitask.should_use_disentangled_alpha=True

You should see something like this (after a few minutes):

| train | E: 5270 | S: 790500 | D: 2.7 s | Su: 0.6000 | BR: 1.1579 | ALOSS: -129.9481 | CLOSS: 48.9331 | R_0: 487.5569 | R_1: 8.9984 | R_2: 158.9726 | R_3: 186.7860 | R_4: 17.6790 | R_5: 179.2791 | R_6: 224.1127 | R_7: 119.9955 | R_8: 100.4628 | R_9: 148.0436 | Su_0: 1.0000 | Su_1: 0.0000 | Su_2: 1.0000 | Su_3: 1.0000 | Su_4: 0.0000 | Su_5: 1.0000 | Su_6: 1.0000 | Su_7: 0.0000 | Su_8: 0.0000 | Su_9: 1.0000 | ENV_0: 0 | ENV_1: 1 | ENV_2: 2 | ENV_3: 3 | ENV_4: 4 | ENV_5: 5 | ENV_6: 6 | ENV_7: 7 | ENV_8: 8 | ENV_9: 9
| train | E: 5271 | S: 790650 | D: 2.7 s | Su: 0.7000 | BR: 1.1659 | ALOSS: -131.8787 | CLOSS: 45.3631 | R_0: 458.9632 | R_1: 294.8278 | R_2: 88.5741 | R_3: 80.9546 | R_4: 328.5237 | R_5: 0.4047 | R_6: 162.7022 | R_7: 227.9077 | R_8: 79.3807 | R_9: 151.6023 | Su_0: 1.0000 | Su_1: 1.0000 | Su_2: 1.0000 | Su_3: 1.0000 | Su_4: 1.0000 | Su_5: 0.0000 | Su_6: 1.0000 | Su_7: 0.0000 | Su_8: 0.0000 | Su_9: 1.0000 | ENV_0: 0 | ENV_1: 1 | ENV_2: 2 | ENV_3: 3 | ENV_4: 4 | ENV_5: 5 | ENV_6: 6 | ENV_7: 7 | ENV_8: 8 | ENV_9: 9

it is very likely that when running the previous command, you will get an error like this:

Maximum path length allowed by the benchmark has been exceeded

This is a mujoco check that we can disable. To do this, simply go to ~/anaconda3/envs/mtrl/lib/python3.8/site-packages/metaworld/envs/mujoco/mujoco_env.py and comment the lines 107 and 108:

if getattr(self, 'curr_path_length', 0) > self.max_path_length:
  raise ValueError('Maximum path length allowed by the benchmark has been exceeded')

Method

PTSL (Projected Task-Specific Layers) is a network architecture for multi-tal learning. It is made of a shared backbone and low-rank task-specific layers (See Figure below for an illustration of PTSL). The backbone is a linear layer that is shared between all tasks. The task-specific layers are linear layers that are specific to each task.

PTSL

Inspiration

PTSL is inspired by the PAL (Projected Attention Layers) architecture introduced in BERT and PALs: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning.

Task-specific layers implementation

One difference with PAL is the use of context. In their paper, the PAL authors do not mention batching for different tasks. This is a challenge as while Pytorch performs an efficient batch matrix multiplication in order to compute $W^T . X$ for a batched $X \in \mathbb{R}^{B \times H}$ and $W \in \mathbb{R}^{H \times D}$, it does not offer a similar solution for a task-dependent batch multiplication. Indeed given a batched $X \in \mathbb{R}^{B \times H}$, a batched task id $\text{Id} \in ⟦0, N-1⟧^B$ and $N$ task-dependent matrices $W^j \in \mathbb{R}^{D \times D}$ (that can be represented by $W \in \mathbb{R}^{N \times D \times D}$ such that $W_j = W^j$), Pytorch does not offer a native way to compute $W_{Id_{k}}^T . X_k$ for $k \in ⟦0, B-1⟧$. In order to solve this, we have to provide $Id$ in advance in order to build $W^B$ such that $W^B_{Id_{k}} = W^{Id_{k}}$ for $k \in ⟦0, B-1⟧$. We can then use batched matrix multiplication to compute $W^B . X$ and then use a gather operation to get the correct output for each task. This is the bottleneck of our implementation as it requires constructing this matrix $W^B$ for each batch. In the future, we may consider implementing in C++ a custom batched matrix multiplication that would take into account the task ID directly in Pytorch.

Tricks for training

Similarly to Projected Attention layers, tuning the task-specific layers can be tricky, especially from scratch. In fact, in the PAL paper, they only add the projected layers to an already pre-trained model as the idea is to use the PAL layers to adapt the shared network. Here, since we train everything from scratch, we need to be careful about the initialization of the task-specific layers. We found out that initializing all the weights with a Xavier initialization and all the biases to zero did not work at all as the loss exploded really fast. We believe that when training both the task-specific layers and the shared layers at the same time, they end up competing against each other. This is why we decided to try to initialize the projection matrices to zero so that the model would first train the shared policy and then gradually train the task-specific layers. This showed great results and so this is what we kept for our experiments.

Recreate the results from the paper

In this section we describe the exact commands to run the same experiments as us and recreate the exact same results. All commands should be run inside the mtrl environment from the root of the repo (Results are seeded from 1 to n if you are running n experiments).

MT-10 for 200K steps

You chan check out our Wandb run here.

  • MT-SAC:
PYTHONPATH=. python3 -u main.py setup=metaworld env=metaworld-mt10 agent=state_sac \
agent.actor.hidden_dim=400 agent.actor.num_layers=3 agent.multitask.num_envs=10 \
experiment.num_eval_episodes=10 experiment.num_train_steps=200000 setup.seed_ref=1 \
setup.num_seeds=10 setup.name=SAC replay_buffer.batch_size=1280 \
agent.encoder.type_to_select=identity agent.multitask.num_envs=10 \
agent.multitask.should_use_disentangled_alpha=True agent.multitask.should_use_multi_head_policy=False \
agent.multitask.actor_cfg.should_condition_model_on_task_info=False \
agent.multitask.actor_cfg.should_condition_encoder_on_task_info=True \
agent.multitask.actor_cfg.should_concatenate_task_info_with_encoder=True
  • Soft Modularization:
PYTHONPATH=. python3 -u main.py setup=metaworld env=metaworld-mt10 agent=state_sac \
experiment.num_eval_episodes=10 experiment.num_train_steps=200000 setup.seed_ref=1 \
setup.num_seeds=10 setup.name=soft_modularization replay_buffer.batch_size=1280 \
agent.multitask.num_envs=10 agent.multitask.should_use_disentangled_alpha=True \
agent.multitask.should_use_task_encoder=True agent.encoder.type_to_select=feedforward \
agent.multitask.actor_cfg.should_condition_model_on_task_info=True \
agent.multitask.actor_cfg.should_condition_encoder_on_task_info=False \
agent.multitask.actor_cfg.should_concatenate_task_info_with_encoder=False \
agent.multitask.actor_cfg.moe_cfg.should_use=True \
agent.multitask.actor_cfg.moe_cfg.mode=soft_modularization \
agent.multitask.should_use_multi_head_policy=False \
agent.encoder.feedforward.hidden_dim=50 agent.encoder.feedforward.num_layers=2 \
agent.encoder.feedforward.feature_dim=50 agent.actor.num_layers=4 \
agent.multitask.task_encoder_cfg.model_cfg.pretrained_embedding_cfg.should_use=False
  • CARE:
PYTHONPATH=. python3 -u main.py setup=metaworld env=metaworld-mt10 agent=state_sac \
agent.actor.hidden_dim=400 agent.actor.num_layers=3 agent.multitask.num_envs=10 \
experiment.num_eval_episodes=10 experiment.num_train_steps=200000 setup.seed_ref=1 \
setup.num_seeds=10 setup.name=CARE replay_buffer.batch_size=1280 agent.encoder.type_to_select=moe \
agent.encoder.moe.task_id_to_encoder_id_cfg.mode=attention agent.encoder.moe.num_experts=4 \
agent.multitask.num_envs=10 agent.multitask.should_use_disentangled_alpha=True \
agent.multitask.should_use_task_encoder=True agent.multitask.should_use_multi_head_policy=False \
agent.multitask.task_encoder_cfg.model_cfg.pretrained_embedding_cfg.should_use=True
  • CARE + PTSL (Same number of parameters as CARE):
PYTHONPATH=. python3 -u main.py setup=metaworld env=metaworld-mt10 agent=state_sac \
agent.actor.hidden_dim=326 agent.actor.num_layers=3 experiment.num_eval_episodes=10 \
experiment.num_train_steps=200000 setup.seed_ref=1 setup.num_seeds=10 \
setup.name=PAL_shared_3_hidden replay_buffer.batch_size=1280 agent.encoder.type_to_select=moe \
agent.encoder.moe.task_id_to_encoder_id_cfg.mode=attention agent.encoder.moe.num_experts=4 \
agent.multitask.num_envs=10 agent.multitask.should_use_disentangled_alpha=True \
agent.multitask.should_use_task_encoder=True agent.multitask.should_use_multi_head_policy=False \
agent.multitask.task_encoder_cfg.model_cfg.pretrained_embedding_cfg.should_use=True \
agent.multitask.should_use_pal=True agent.multitask.pal_cfg.pal_dim=50 \
agent.multitask.pal_cfg.shared_projection=True agent.multitask.pal_cfg.residual_mode=none
  • CARE + PTSL (2 hidden layers):
PYTHONPATH=. python3 -u main.py setup=metaworld env=metaworld-mt10 agent=state_sac \
agent.actor.hidden_dim=400 agent.actor.num_layers=2 experiment.num_eval_episodes=10 \
experiment.num_train_steps=200000 setup.seed_ref=1 setup.num_seeds=10 \
setup.name=PAL_shared_2_hidden replay_buffer.batch_size=1280 agent.encoder.type_to_select=moe \
agent.encoder.moe.task_id_to_encoder_id_cfg.mode=attention agent.encoder.moe.num_experts=4 \
agent.multitask.num_envs=10 agent.multitask.should_use_disentangled_alpha=True \
agent.multitask.should_use_task_encoder=True agent.multitask.should_use_multi_head_policy=False \
agent.multitask.task_encoder_cfg.model_cfg.pretrained_embedding_cfg.should_use=True \
agent.multitask.should_use_pal=True agent.multitask.pal_cfg.pal_dim=50 \
agent.multitask.pal_cfg.shared_projection=True agent.multitask.pal_cfg.residual_mode=none

MT-10 for 1M steps

You chan check out our Wandb run here.

  • MT-SAC:
PYTHONPATH=. python3 -u main.py setup=metaworld env=metaworld-mt10 agent=state_sac \
agent.actor.hidden_dim=400 agent.actor.num_layers=3 agent.multitask.num_envs=10 \
experiment.num_eval_episodes=10 experiment.num_train_steps=1000000 setup.seed_ref=1 \
setup.num_seeds=4 setup.name=SAC replay_buffer.batch_size=1280 \
agent.encoder.type_to_select=identity agent.multitask.num_envs=10 \
agent.multitask.should_use_disentangled_alpha=True agent.multitask.should_use_multi_head_policy=False \
agent.multitask.actor_cfg.should_condition_model_on_task_info=False \
agent.multitask.actor_cfg.should_condition_encoder_on_task_info=True \
agent.multitask.actor_cfg.should_concatenate_task_info_with_encoder=True
  • Soft Modularization:
PYTHONPATH=. python3 -u main.py setup=metaworld env=metaworld-mt10 agent=state_sac \
experiment.num_eval_episodes=10 experiment.num_train_steps=1000000 setup.seed_ref=1 \
setup.num_seeds=4 setup.name=soft_modularization replay_buffer.batch_size=1280 \
agent.multitask.num_envs=10 agent.multitask.should_use_disentangled_alpha=True \
agent.multitask.should_use_task_encoder=True agent.encoder.type_to_select=feedforward \
agent.multitask.actor_cfg.should_condition_model_on_task_info=True \
agent.multitask.actor_cfg.should_condition_encoder_on_task_info=False \
agent.multitask.actor_cfg.should_concatenate_task_info_with_encoder=False \
agent.multitask.actor_cfg.moe_cfg.should_use=True \
agent.multitask.actor_cfg.moe_cfg.mode=soft_modularization \
agent.multitask.should_use_multi_head_policy=False \
agent.encoder.feedforward.hidden_dim=50 agent.encoder.feedforward.num_layers=2 \
agent.encoder.feedforward.feature_dim=50 agent.actor.num_layers=4 \
agent.multitask.task_encoder_cfg.model_cfg.pretrained_embedding_cfg.should_use=False
  • CARE:
PYTHONPATH=. python3 -u main.py setup=metaworld env=metaworld-mt10 agent=state_sac \
agent.actor.hidden_dim=400 agent.actor.num_layers=3 agent.multitask.num_envs=10 \
experiment.num_eval_episodes=10 experiment.num_train_steps=1000000 setup.seed_ref=1 \
setup.num_seeds=4 setup.name=CARE replay_buffer.batch_size=1280 agent.encoder.type_to_select=moe \
agent.encoder.moe.task_id_to_encoder_id_cfg.mode=attention agent.encoder.moe.num_experts=4 \
agent.multitask.num_envs=10 agent.multitask.should_use_disentangled_alpha=True \
agent.multitask.should_use_task_encoder=True agent.multitask.should_use_multi_head_policy=False \
agent.multitask.task_encoder_cfg.model_cfg.pretrained_embedding_cfg.should_use=True
  • CARE + PTSL (Same number of parameters as CARE):
PYTHONPATH=. python3 -u main.py setup=metaworld env=metaworld-mt10 agent=state_sac \
agent.actor.hidden_dim=326 agent.actor.num_layers=3 experiment.num_eval_episodes=10 \
experiment.num_train_steps=1000000 setup.seed_ref=1 setup.num_seeds=4 \
setup.name=PAL_shared_3_hidden replay_buffer.batch_size=1280 agent.encoder.type_to_select=moe \
agent.encoder.moe.task_id_to_encoder_id_cfg.mode=attention agent.encoder.moe.num_experts=4 \
agent.multitask.num_envs=10 agent.multitask.should_use_disentangled_alpha=True \
agent.multitask.should_use_task_encoder=True agent.multitask.should_use_multi_head_policy=False \
agent.multitask.task_encoder_cfg.model_cfg.pretrained_embedding_cfg.should_use=True \
agent.multitask.should_use_pal=True agent.multitask.pal_cfg.pal_dim=50 \
agent.multitask.pal_cfg.shared_projection=True agent.multitask.pal_cfg.residual_mode=none
  • SAC + PTSL (Same number of parameters as CARE):
PYTHONPATH=. python3 -u main.py setup=metaworld env=metaworld-mt10 agent=state_sac \
agent.actor.hidden_dim=367 agent.actor.num_layers=3 agent.multitask.num_envs=10 \
experiment.num_eval_episodes=10 experiment.num_train_steps=1000000 setup.seed_ref=1 \
setup.num_seeds=4 setup.name=SAC_PTSL replay_buffer.batch_size=1280 \
agent.encoder.type_to_select=identity agent.multitask.num_envs=10 \
agent.multitask.should_use_disentangled_alpha=True agent.multitask.should_use_multi_head_policy=False \
agent.multitask.actor_cfg.should_condition_model_on_task_info=False \
agent.multitask.actor_cfg.should_condition_encoder_on_task_info=True \
agent.multitask.actor_cfg.should_concatenate_task_info_with_encoder=True \
agent.multitask.should_use_pal=True agent.multitask.pal_cfg.pal_dim=50 \
agent.multitask.pal_cfg.shared_projection=True agent.multitask.pal_cfg.residual_mode=none

MT-10 - Projection Analysis

You chan check out our Wandb run here.

  • CARE - PTSL (Independent Projection):
PYTHONPATH=. python3 -u main.py setup=metaworld env=metaworld-mt10 agent=state_sac \
agent.actor.hidden_dim=400 agent.actor.num_layers=2 experiment.num_eval_episodes=10 \
experiment.num_train_steps=200000 setup.seed_ref=1 setup.num_seeds=10 \
setup.name=PAL_shared replay_buffer.batch_size=1280 agent.encoder.type_to_select=moe \
agent.encoder.moe.task_id_to_encoder_id_cfg.mode=attention agent.encoder.moe.num_experts=4 \
agent.multitask.num_envs=10 agent.multitask.should_use_disentangled_alpha=True \
agent.multitask.should_use_task_encoder=True agent.multitask.should_use_multi_head_policy=False \
agent.multitask.task_encoder_cfg.model_cfg.pretrained_embedding_cfg.should_use=True \
agent.multitask.should_use_pal=True agent.multitask.pal_cfg.pal_dim=50 \
agent.multitask.pal_cfg.shared_projection=False agent.multitask.pal_cfg.residual_mode=none
  • CARE - PTSL (Shared Projection):
PYTHONPATH=. python3 -u main.py setup=metaworld env=metaworld-mt10 agent=state_sac \
agent.actor.hidden_dim=400 agent.actor.num_layers=2 experiment.num_eval_episodes=10 \
experiment.num_train_steps=200000 setup.seed_ref=1 setup.num_seeds=10 \
setup.name=PAL_shared replay_buffer.batch_size=1280 agent.encoder.type_to_select=moe \
agent.encoder.moe.task_id_to_encoder_id_cfg.mode=attention agent.encoder.moe.num_experts=4 \
agent.multitask.num_envs=10 agent.multitask.should_use_disentangled_alpha=True \
agent.multitask.should_use_task_encoder=True agent.multitask.should_use_multi_head_policy=False \
agent.multitask.task_encoder_cfg.model_cfg.pretrained_embedding_cfg.should_use=True \
agent.multitask.should_use_pal=True agent.multitask.pal_cfg.pal_dim=50 \
agent.multitask.pal_cfg.shared_projection=True agent.multitask.pal_cfg.residual_mode=none

MT-10 - Residual Analysis

You chan check out our Wandb run here.

  • CARE - PTSL (No Residual):
PYTHONPATH=. python3 -u main.py setup=metaworld env=metaworld-mt10 agent=state_sac \
agent.actor.hidden_dim=321 agent.actor.num_layers=3 experiment.num_eval_episodes=10 \
experiment.num_train_steps=200000 setup.seed_ref=1 setup.num_seeds=4 \
setup.name=PAL_shared replay_buffer.batch_size=1280 agent.encoder.type_to_select=moe \
agent.encoder.moe.task_id_to_encoder_id_cfg.mode=attention agent.encoder.moe.num_experts=4 \
agent.multitask.num_envs=10 agent.multitask.should_use_disentangled_alpha=True \
agent.multitask.should_use_task_encoder=True agent.multitask.should_use_multi_head_policy=False \
agent.multitask.task_encoder_cfg.model_cfg.pretrained_embedding_cfg.should_use=True \
agent.multitask.should_use_pal=True agent.multitask.pal_cfg.pal_dim=50 \
agent.multitask.pal_cfg.shared_projection=True agent.multitask.pal_cfg.residual_mode=none
  • CARE - PTSL (Sum Residual):
PYTHONPATH=. python3 -u main.py setup=metaworld env=metaworld-mt10 agent=state_sac \
agent.actor.hidden_dim=326 agent.actor.num_layers=3 experiment.num_eval_episodes=10 \
experiment.num_train_steps=200000 setup.seed_ref=1 setup.num_seeds=4 \
setup.name=PAL_shared replay_buffer.batch_size=1280 agent.encoder.type_to_select=moe \
agent.encoder.moe.task_id_to_encoder_id_cfg.mode=attention agent.encoder.moe.num_experts=4 \
agent.multitask.num_envs=10 agent.multitask.should_use_disentangled_alpha=True \
agent.multitask.should_use_task_encoder=True agent.multitask.should_use_multi_head_policy=False \
agent.multitask.task_encoder_cfg.model_cfg.pretrained_embedding_cfg.should_use=True \
agent.multitask.should_use_pal=True agent.multitask.pal_cfg.pal_dim=50 \
agent.multitask.pal_cfg.shared_projection=True agent.multitask.pal_cfg.residual_mode=sum
  • CARE - PTSL (Linear Residual):
PYTHONPATH=. python3 -u main.py setup=metaworld env=metaworld-mt10 agent=state_sac \
agent.actor.hidden_dim=326 agent.actor.num_layers=3 experiment.num_eval_episodes=10 \
experiment.num_train_steps=200000 setup.seed_ref=1 setup.num_seeds=4 \
setup.name=PAL_shared replay_buffer.batch_size=1280 agent.encoder.type_to_select=moe \
agent.encoder.moe.task_id_to_encoder_id_cfg.mode=attention agent.encoder.moe.num_experts=4 \
agent.multitask.num_envs=10 agent.multitask.should_use_disentangled_alpha=True \
agent.multitask.should_use_task_encoder=True agent.multitask.should_use_multi_head_policy=False \
agent.multitask.task_encoder_cfg.model_cfg.pretrained_embedding_cfg.should_use=True \
agent.multitask.should_use_pal=True agent.multitask.pal_cfg.pal_dim=50 \
agent.multitask.pal_cfg.shared_projection=True agent.multitask.pal_cfg.residual_mode=linear
  • CARE - PTSL (Product Residual):
PYTHONPATH=. python3 -u main.py setup=metaworld env=metaworld-mt10 agent=state_sac \
agent.actor.hidden_dim=321 agent.actor.num_layers=3 experiment.num_eval_episodes=10 \
experiment.num_train_steps=200000 setup.seed_ref=1 setup.num_seeds=4 \
setup.name=PAL_shared replay_buffer.batch_size=1280 agent.encoder.type_to_select=moe \
agent.encoder.moe.task_id_to_encoder_id_cfg.mode=attention agent.encoder.moe.num_experts=4 \
agent.multitask.num_envs=10 agent.multitask.should_use_disentangled_alpha=True \
agent.multitask.should_use_task_encoder=True agent.multitask.should_use_multi_head_policy=False \
agent.multitask.task_encoder_cfg.model_cfg.pretrained_embedding_cfg.should_use=True \
agent.multitask.should_use_pal=True agent.multitask.pal_cfg.pal_dim=50 \
agent.multitask.pal_cfg.shared_projection=True agent.multitask.pal_cfg.residual_mode=project

MT-50 for 200K steps

You chan check out our Wandb run here.

  • MT-SAC:
PYTHONPATH=. python3 -u main.py setup=metaworld env=metaworld-mt50 agent=state_sac \
agent.actor.hidden_dim=400 agent.actor.num_layers=3 agent.multitask.num_envs=50 \
experiment.num_eval_episodes=10 experiment.num_train_steps=200000 setup.seed_ref=1 \
setup.num_seeds=10 setup.name=SAC replay_buffer.batch_size=1280 \
agent.encoder.type_to_select=identity agent.multitask.num_envs=50 \
agent.multitask.should_use_disentangled_alpha=True agent.multitask.should_use_multi_head_policy=False \
agent.multitask.actor_cfg.should_condition_model_on_task_info=False \
agent.multitask.actor_cfg.should_condition_encoder_on_task_info=True \
agent.multitask.actor_cfg.should_concatenate_task_info_with_encoder=True
  • Soft Modularization:
PYTHONPATH=. python3 -u main.py setup=metaworld env=metaworld-mt50 agent=state_sac \
experiment.num_eval_episodes=10 experiment.num_train_steps=200000 setup.seed_ref=1 \
setup.num_seeds=10 setup.name=soft_modularization replay_buffer.batch_size=1280 \
agent.multitask.num_envs=50 agent.multitask.should_use_disentangled_alpha=True \
agent.multitask.should_use_task_encoder=True agent.encoder.type_to_select=feedforward \
agent.multitask.actor_cfg.should_condition_model_on_task_info=True \
agent.multitask.actor_cfg.should_condition_encoder_on_task_info=False \
agent.multitask.actor_cfg.should_concatenate_task_info_with_encoder=False \
agent.multitask.actor_cfg.moe_cfg.should_use=True \
agent.multitask.actor_cfg.moe_cfg.mode=soft_modularization \
agent.multitask.should_use_multi_head_policy=False \
agent.encoder.feedforward.hidden_dim=50 agent.encoder.feedforward.num_layers=2 \
agent.encoder.feedforward.feature_dim=50 agent.actor.num_layers=4 \
agent.multitask.task_encoder_cfg.model_cfg.pretrained_embedding_cfg.should_use=False
  • CARE:
PYTHONPATH=. python3 -u main.py setup=metaworld env=metaworld-mt50 agent=state_sac \
agent.actor.hidden_dim=400 agent.actor.num_layers=3 agent.multitask.num_envs=50 \
experiment.num_eval_episodes=10 experiment.num_train_steps=200000 setup.seed_ref=1 \
setup.num_seeds=10 setup.name=CARE replay_buffer.batch_size=1280 agent.encoder.type_to_select=moe \
agent.encoder.moe.task_id_to_encoder_id_cfg.mode=attention agent.encoder.moe.num_experts=4 \
agent.multitask.num_envs=50 agent.multitask.should_use_disentangled_alpha=True \
agent.multitask.should_use_task_encoder=True agent.multitask.should_use_multi_head_policy=False \
agent.multitask.task_encoder_cfg.model_cfg.pretrained_embedding_cfg.should_use=True
  • CARE - PTSL (Same number of parameters as CARE):
PYTHONPATH=. python3 -u main.py setup=metaworld env=metaworld-mt50 agent=state_sac \
agent.actor.hidden_dim=326 agent.actor.num_layers=3 experiment.num_eval_episodes=50 \
experiment.num_train_steps=200000 setup.seed_ref=1 setup.num_seeds=10 \
setup.name=PAL_shared_3_hidden replay_buffer.batch_size=1280 agent.encoder.type_to_select=moe \
agent.encoder.moe.task_id_to_encoder_id_cfg.mode=attention agent.encoder.moe.num_experts=4 \
agent.multitask.num_envs=50 agent.multitask.should_use_disentangled_alpha=True \
agent.multitask.should_use_task_encoder=True agent.multitask.should_use_multi_head_policy=False \
agent.multitask.task_encoder_cfg.model_cfg.pretrained_embedding_cfg.should_use=True \
agent.multitask.should_use_pal=True agent.multitask.pal_cfg.pal_dim=50 \
agent.multitask.pal_cfg.shared_projection=True agent.multitask.pal_cfg.residual_mode=none
  • CARE - PTSL (2 hidden layers):
PYTHONPATH=. python3 -u main.py setup=metaworld env=metaworld-mt50 agent=state_sac \
agent.actor.hidden_dim=400 agent.actor.num_layers=2 experiment.num_eval_episodes=50 \
experiment.num_train_steps=200000 setup.seed_ref=1 setup.num_seeds=10 \
setup.name=PAL_shared_2_hidden replay_buffer.batch_size=1280 agent.encoder.type_to_select=moe \
agent.encoder.moe.task_id_to_encoder_id_cfg.mode=attention agent.encoder.moe.num_experts=4 \
agent.multitask.num_envs=50 agent.multitask.should_use_disentangled_alpha=True \
agent.multitask.should_use_task_encoder=True agent.multitask.should_use_multi_head_policy=False \
agent.multitask.task_encoder_cfg.model_cfg.pretrained_embedding_cfg.should_use=True \
agent.multitask.should_use_pal=True agent.multitask.pal_cfg.pal_dim=50 \
agent.multitask.pal_cfg.shared_projection=True agent.multitask.pal_cfg.residual_mode=none

MT-50 for 1M steps

You chan check out our Wandb run here.

  • MT-SAC:
PYTHONPATH=. python3 -u main.py setup=metaworld env=metaworld-mt50 agent=state_sac \
agent.actor.hidden_dim=400 agent.actor.num_layers=3 agent.multitask.num_envs=50 \
experiment.num_eval_episodes=10 experiment.num_train_steps=1000000 setup.seed_ref=1 \
setup.num_seeds=4 setup.name=SAC replay_buffer.batch_size=1280 \
agent.encoder.type_to_select=identity agent.multitask.num_envs=50 \
agent.multitask.should_use_disentangled_alpha=True agent.multitask.should_use_multi_head_policy=False \
agent.multitask.actor_cfg.should_condition_model_on_task_info=False \
agent.multitask.actor_cfg.should_condition_encoder_on_task_info=True \
agent.multitask.actor_cfg.should_concatenate_task_info_with_encoder=True
  • Soft Modularization:
PYTHONPATH=. python3 -u main.py setup=metaworld env=metaworld-mt50 agent=state_sac \
experiment.num_eval_episodes=10 experiment.num_train_steps=1000000 setup.seed_ref=1 \
setup.num_seeds=4 setup.name=soft_modularization replay_buffer.batch_size=1280 \
agent.multitask.num_envs=50 agent.multitask.should_use_disentangled_alpha=True \
agent.multitask.should_use_task_encoder=True agent.encoder.type_to_select=feedforward \
agent.multitask.actor_cfg.should_condition_model_on_task_info=True \
agent.multitask.actor_cfg.should_condition_encoder_on_task_info=False \
agent.multitask.actor_cfg.should_concatenate_task_info_with_encoder=False \
agent.multitask.actor_cfg.moe_cfg.should_use=True \
agent.multitask.actor_cfg.moe_cfg.mode=soft_modularization \
agent.multitask.should_use_multi_head_policy=False \
agent.encoder.feedforward.hidden_dim=50 agent.encoder.feedforward.num_layers=2 \
agent.encoder.feedforward.feature_dim=50 agent.actor.num_layers=4 \
agent.multitask.task_encoder_cfg.model_cfg.pretrained_embedding_cfg.should_use=False
  • CARE:
PYTHONPATH=. python3 -u main.py setup=metaworld env=metaworld-mt50 agent=state_sac \
agent.actor.hidden_dim=400 agent.actor.num_layers=3 agent.multitask.num_envs=50 \
experiment.num_eval_episodes=10 experiment.num_train_steps=1000000 setup.seed_ref=1 \
setup.num_seeds=4 setup.name=CARE replay_buffer.batch_size=1280 agent.encoder.type_to_select=moe \
agent.encoder.moe.task_id_to_encoder_id_cfg.mode=attention agent.encoder.moe.num_experts=4 \
agent.multitask.num_envs=50 agent.multitask.should_use_disentangled_alpha=True \
agent.multitask.should_use_task_encoder=True agent.multitask.should_use_multi_head_policy=False \
agent.multitask.task_encoder_cfg.model_cfg.pretrained_embedding_cfg.should_use=True
  • CARE + PTSL (Same number of parameters as CARE):
PYTHONPATH=. python3 -u main.py setup=metaworld env=metaworld-mt50 agent=state_sac \
agent.actor.hidden_dim=274 agent.actor.num_layers=3 experiment.num_eval_episodes=50 \
experiment.num_train_steps=1000000 setup.seed_ref=1 setup.num_seeds=4 \
setup.name=PAL_shared replay_buffer.batch_size=1280 agent.encoder.type_to_select=moe \
agent.encoder.moe.task_id_to_encoder_id_cfg.mode=attention agent.encoder.moe.num_experts=4 \
agent.multitask.num_envs=50 agent.multitask.should_use_disentangled_alpha=True \
agent.multitask.should_use_task_encoder=True agent.multitask.should_use_multi_head_policy=False \
agent.multitask.task_encoder_cfg.model_cfg.pretrained_embedding_cfg.should_use=True \
agent.multitask.should_use_pal=True agent.multitask.pal_cfg.pal_dim=32 \
agent.multitask.pal_cfg.shared_projection=True agent.multitask.pal_cfg.residual_mode=none
  • MT-SAC + PTSL (Same number of parameters as CARE):
PYTHONPATH=. python3 -u main.py setup=metaworld env=metaworld-mt50 agent=state_sac \
agent.actor.hidden_dim=325 agent.actor.num_layers=3 agent.multitask.num_envs=50 \
experiment.num_eval_episodes=10 experiment.num_train_steps=1000000 setup.seed_ref=1 \
setup.num_seeds=4 setup.name=SAC_PTSL replay_buffer.batch_size=1280 \
agent.encoder.type_to_select=identity agent.multitask.num_envs=50 \
agent.multitask.should_use_disentangled_alpha=True agent.multitask.should_use_multi_head_policy=False \
agent.multitask.actor_cfg.should_condition_model_on_task_info=False \
agent.multitask.actor_cfg.should_condition_encoder_on_task_info=True \
agent.multitask.actor_cfg.should_concatenate_task_info_with_encoder=True \
agent.multitask.should_use_pal=True agent.multitask.pal_cfg.pal_dim=32 \
agent.multitask.pal_cfg.shared_projection=True agent.multitask.pal_cfg.residual_mode=none

License