-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaze.py
225 lines (182 loc) · 7.38 KB
/
maze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
"""
For function output_image to work and export the solution in a maze drawing in .png
you should install pillow first in your environment.
pip install pillow
or
pip install -r requirements.txt
It will output a .png image with the solution path in the Maze (yellow color).
If show_explored=True is given as argument into algorithm function,
it will show other paths followed( RED color) before finding the solution path
Usage: python maze.py maze.txt
"""
import os, sys
class Maze():
"""
A Maze representation, reads a maze scheme from .txt file and creates Maze object
source: https://cs50.harvard.edu/ai/2020/
"""
def __init__(self, filename):
this_dir = os.path.dirname(os.path.abspath(__file__))
my_data_path = os.path.join(this_dir, filename)
# Read file and set height and width of maze
with open(my_data_path) as f:
contents = f.read()
# Validate start and goal
if contents.count("A") != 1:
raise Exception("maze must have exactly one start point")
if contents.count("B") != 1:
raise Exception("maze must have exactly one goal")
# Determine height and width of maze
contents = contents.splitlines()
self.height = len(contents)
self.width = max(len(line) for line in contents)
# Keep track of walls
self.walls = []
for i in range(self.height):
row = []
for j in range(self.width):
try:
if contents[i][j] == "A":
self.start = (i, j)
row.append(False)
elif contents[i][j] == "B":
self.goal = (i, j)
row.append(False)
elif contents[i][j] == " ":
row.append(False)
else:
row.append(True)
except IndexError:
row.append(False)
self.walls.append(row)
self.solution = None
def print(self):
solution = self.solution[1] if self.solution is not None else None
print()
for i, row in enumerate(self.walls):
for j, col in enumerate(row):
if col:
print("█", end="")
elif (i, j) == self.start:
print("A", end="")
elif (i, j) == self.goal:
print("B", end="")
elif solution is not None and (i, j) in solution:
print("*", end="")
else:
print(" ", end="")
print()
print()
def neighbors_bb(self, action, state): #add action for BB path_cost arguments to work although not required for the maze
row, col = state
candidates = [
("up", (row - 1, col)),
("down", (row + 1, col)),
("left", (row, col - 1)),
("right", (row, col + 1))
]
result = []
for action, (r, c) in candidates:
if 0 <= r < self.height and 0 <= c < self.width and not self.walls[r][c]:
result.append((action, (r, c)))
return result
def neighbors(self, state):
row, col = state
candidates = [
("up", (row - 1, col)),
("down", (row + 1, col)),
("left", (row, col - 1)),
("right", (row, col + 1))
]
result = []
for action, (r, c) in candidates:
if 0 <= r < self.height and 0 <= c < self.width and not self.walls[r][c]:
result.append((action, (r, c)))
return result
def manhattan_distance(self, a, b):
distance = abs(a[0]-b[0]) + abs(a[1] - b[1])
print("MAnhatan distance: {}".format(distance))
return distance
def path_cost(self, a, b):
"""
the cost of moving to a new tile is always 1
this function is used in case a path cost is required as input for an algorithm (ex. Branch and Bound)
"""
return 1
def output_image(self, filename, show_solution=True, show_explored=False):
from PIL import Image, ImageDraw
cell_size = 50
cell_border = 2
# Create a blank canvas
img = Image.new(
"RGBA",
(self.width * cell_size, self.height * cell_size),
"black"
)
draw = ImageDraw.Draw(img)
solution = self.solution[1] if self.solution is not None else None
for i, row in enumerate(self.walls):
for j, col in enumerate(row):
# Walls
if col:
fill = (40, 40, 40)
# Start
elif (i, j) == self.start:
fill = (255, 0, 0)
# Goal
elif (i, j) == self.goal:
fill = (0, 171, 28)
# Solution
elif solution is not None and show_solution and (i, j) in solution:
fill = (220, 235, 113)
# Explored
elif solution is not None and show_explored and (i, j) in self.explored:
fill = (212, 97, 85)
# Empty cell
else:
fill = (237, 240, 252)
# Draw cell
draw.rectangle(
([(j * cell_size + cell_border, i * cell_size + cell_border),
((j + 1) * cell_size - cell_border, (i + 1) * cell_size - cell_border)]),
fill=fill
)
img.save(filename)
if len(sys.argv) != 2:
sys.exit("Usage: python maze.py maze.txt")
m = Maze(sys.argv[1])
print("Maze:")
m.print()
print("Solving...")
##Comment out or uncomment ''' to try the algorithms below:
#example of uninformed search
from libsearch import breadth_first_search
## using breadth_first_search and return number of explored states(num_explored) and closed frontier(explored) along with solution
m.solution, m.num_explored, m.explored = breadth_first_search(actions=m.neighbors, start=m.start, goal=m.goal, count_states=True, show_explored=True)
print(50*"*")
print("Solution variable: {}".format(m.solution))
print("Graphic Solution (Breadth first Search):")
m.print()
m.output_image("blind_breadth_fs.png", show_explored=True)
#example for informed search
'''
from libsearch import a_star, best_first_search
## using a_star and return number of explored states(num_explored) and closed frontier(explored) along with solution
m.solution, m.num_explored, m.explored = a_star(actions=m.neighbors, start=m.start, goal=m.goal, heuristic=m.manhattan_distance, count_states=True, show_explored=True)
print(50*"*")
print("Solution variable: {}".format(m.solution))
print("States Explored:", m.num_explored)
print("Graphic Solution (A Star):")
m.print()
m.output_image("informed_a_star.png", show_explored=True)
'''
'''
## using best_first_search and return number of explored states(num_explored) and closed frontier(explored) along with solution
m.solution, m.num_explored, m.explored = best_first_search(actions=m.neighbors, start=m.start, goal=m.goal, heuristic=m.manhattan_distance, count_states=True, show_explored=True)
print(50*"*")
print("Solution variable: {}".format(m.solution))
print("States Explored:", m.num_explored)
print("Graphic Solution (Best First Search):")
m.print()
m.output_image("informed_best_fs.png", show_explored=True)
'''