-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_model.py
67 lines (57 loc) · 2.18 KB
/
test_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
"""Selects the model parameters corresponding to the epoch with highest
validation IoU and evaluates the model with them on the test dataset.
"""
import random
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from constants import ImagesTransforms, ModelConstants
from unet import UNet
from utils import CustomDataset, calculate_iou
RANDOM_STATE = 30224
random.seed(RANDOM_STATE)
np.random.seed(RANDOM_STATE)
torch.manual_seed(RANDOM_STATE)
torch.cuda.manual_seed(RANDOM_STATE)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if __name__ == "__main__":
df_test = pd.read_csv("test.csv", usecols=["image_path", "mask_path"])
results = pd.read_csv("results.csv", index_col="epoch").sort_index()
# get the epoch for which the validation IoU is largest
max_val_iou = results["validation_iou"].max()
best_epoch = results[results["validation_iou"] == max_val_iou].index.values[0]
print(f"Best epoch is {best_epoch}")
model_path = f"./models/epoch_{best_epoch}.pt"
# create test dataset
test_dataset = CustomDataset(
df_test,
image_transform=ImagesTransforms.IMAGE_TRANSFORM,
mask_transform=ImagesTransforms.MASK_TRANSFORM,
)
# check if CUDA is available and use it, otherwise stick with CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = UNet(ModelConstants.N_CHANNELS, ModelConstants.N_CLASSES)
model.to(device)
criterion = nn.BCEWithLogitsLoss()
checkpoint = torch.load(model_path)
model.load_state_dict(checkpoint["model_state_dict"])
test_loader = DataLoader(
test_dataset,
batch_size=ModelConstants.BATCH_SIZE,
shuffle=False,
)
model.eval()
test_loss = 0
test_iou = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output, target).item()
test_iou += calculate_iou(output, target).item()
print(
f"Test Loss: {test_loss / len(test_loader)}, Test IoU: {test_iou / len(test_loader)}"
)