From 5c9470e692c931244ab9c72b8b3f4d60e3a5d29a Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Jannis=20H=C3=B6schele?= Date: Fri, 10 Jul 2020 18:02:15 +0200 Subject: [PATCH] updates mmaps, add random locations, tweak detour --- AmeisenNavigation.Demo/main.cpp | 88 +- AmeisenNavigation.Demo/main.h | 2 + .../AmeisenNavigation.Server.csproj | 2 +- AmeisenNavigation.Server/App.config | 6 +- AmeisenNavigation.Server/Program.cs | 47 +- .../Properties/AssemblyInfo.cs | 6 +- .../objects/Enums/MovementType.cs | 4 +- .../objects/PathRequest.cs | 7 +- AmeisenNavigation.Server/objects/Settings.cs | 9 +- AmeisenNavigation.Server/packages.config | 2 +- .../AmeisenNavigationWrapper.h | 24 +- AmeisenNavigation/ameisennavigation.cpp | 91 +- AmeisenNavigation/ameisennavigation.h | 31 +- recastnavigation/Recast/CMakeLists.txt | 40 - recastnavigation/Recast/Include/Recast.h | 1208 ----------- recastnavigation/Recast/Include/RecastAlloc.h | 342 ---- .../Recast/Include/RecastAssert.h | 56 - recastnavigation/Recast/Source/Recast.cpp | 575 ------ .../Recast/Source/RecastAlloc.cpp | 60 - recastnavigation/Recast/Source/RecastArea.cpp | 591 ------ .../Recast/Source/RecastAssert.cpp | 35 - .../Recast/Source/RecastContour.cpp | 1105 ---------- .../Recast/Source/RecastFilter.cpp | 202 -- .../Recast/Source/RecastLayers.cpp | 644 ------ recastnavigation/Recast/Source/RecastMesh.cpp | 1552 -------------- .../Recast/Source/RecastMeshDetail.cpp | 1464 ------------- .../Recast/Source/RecastRasterization.cpp | 454 ----- .../Recast/Source/RecastRegion.cpp | 1812 ----------------- 28 files changed, 239 insertions(+), 10220 deletions(-) delete mode 100644 recastnavigation/Recast/CMakeLists.txt delete mode 100644 recastnavigation/Recast/Include/Recast.h delete mode 100644 recastnavigation/Recast/Include/RecastAlloc.h delete mode 100644 recastnavigation/Recast/Include/RecastAssert.h delete mode 100644 recastnavigation/Recast/Source/Recast.cpp delete mode 100644 recastnavigation/Recast/Source/RecastAlloc.cpp delete mode 100644 recastnavigation/Recast/Source/RecastArea.cpp delete mode 100644 recastnavigation/Recast/Source/RecastAssert.cpp delete mode 100644 recastnavigation/Recast/Source/RecastContour.cpp delete mode 100644 recastnavigation/Recast/Source/RecastFilter.cpp delete mode 100644 recastnavigation/Recast/Source/RecastLayers.cpp delete mode 100644 recastnavigation/Recast/Source/RecastMesh.cpp delete mode 100644 recastnavigation/Recast/Source/RecastMeshDetail.cpp delete mode 100644 recastnavigation/Recast/Source/RecastRasterization.cpp delete mode 100644 recastnavigation/Recast/Source/RecastRegion.cpp diff --git a/AmeisenNavigation.Demo/main.cpp b/AmeisenNavigation.Demo/main.cpp index e031916..2a681b4 100644 --- a/AmeisenNavigation.Demo/main.cpp +++ b/AmeisenNavigation.Demo/main.cpp @@ -2,33 +2,42 @@ int main() { - int mapId = 0; // Eastern Kingdoms - std::string mmapsFolder = "H:\\WoW Stuff\\3.3.5a mmaps\\"; + int mapId = 489; // warsong gulch + std::string mmapsFolder = "C:\\Users\\Jannis Server\\Downloads\\mmaps\\"; - Vector3 startPositionCastMovementRay(-8826.562500f, -371.839752f, 71.638428f); - Vector3 endPositionCastMovementRay(-8918.406250f, -130.297256f, 80.906364f); + Vector3 startPositionCastMovementRay(916, 1434, 346); + Vector3 endPositionCastMovementRay(1539, 1481, 352); - Vector3 startPositionMoveAlongSurface(-8826.562500f, -371.839752f, 71.638428f); - Vector3 endPositionMoveAlongSurface(-8918.406250f, -130.297256f, 80.906364f); + Vector3 startPositionMoveAlongSurface(916, 1434, 346); + Vector3 endPositionMoveAlongSurface(1539, 1481, 352); - Vector3 startPositionGetPath(-8826.562500f, -371.839752f, 71.638428f); - Vector3 endPositionGetPath(-8918.406250f, -130.297256f, 80.906364f); + Vector3 startPositionGetPath(916, 1434, 346); + Vector3 endPositionGetPath(1539, 1481, 352); - // use this to test same-poly pathfinding - Vector3 endPositionSamePoly(-8828.562500f, -371.839752f, 71.638428f); + std::cout << ">> Ameisen Navigation Demo" << std::endl; - std::cout << ">> Ameisen Navigation Demo" << std::endl << std::endl; + std::cout << ">> MMAPFolder: \"" << mmapsFolder << "\"" << std::endl; + std::cout << ">> MapId: " << mapId << std::endl; - std::cout << ">> MMAPFolder: \t\t\t\"" << mmapsFolder << "\"" << std::endl; - std::cout << ">> MapId: \t\t\t" << mapId << std::endl << std::endl; - - AmeisenNavigation ameisenNavigation = AmeisenNavigation(mmapsFolder); + AmeisenNavigation ameisenNavigation = AmeisenNavigation(mmapsFolder, 256, 32); TestLoadMmaps(mapId, ameisenNavigation); - TestCastMovementRay(mapId, ameisenNavigation, startPositionCastMovementRay, endPositionCastMovementRay); + + std::cout << std::endl << ">> ---- Testing CastMovementRay:" << std::endl; + TestCastMovementRay(mapId, ameisenNavigation, startPositionCastMovementRay, Vector3(918, 1434, 346)); + + std::cout << std::endl << ">> ---- Testing MoveAlongSurface:" << std::endl; TestMoveAlongSurface(mapId, ameisenNavigation, startPositionMoveAlongSurface, endPositionMoveAlongSurface); + + std::cout << std::endl << ">> ---- Testing GetPath:" << std::endl; TestGetPath(mapId, ameisenNavigation, startPositionGetPath, endPositionGetPath); + std::cout << std::endl << ">> ---- Testing GetRandomPoint:" << std::endl; + TestRandomPoint(mapId, ameisenNavigation); + + std::cout << std::endl << ">> ---- Testing GetRandomPointAround:" << std::endl; + TestRandomPointAround(mapId, ameisenNavigation, startPositionGetPath); + std::cout << std::endl << ">> Press a key to exit this Application"; std::cin.get(); } @@ -39,32 +48,33 @@ void TestCastMovementRay(const int mapId, AmeisenNavigation& ameisenNavigation, bool result = ameisenNavigation.CastMovementRay(mapId, startPosition, endPosition); std::chrono::high_resolution_clock::time_point t2CastMovementRay = std::chrono::high_resolution_clock::now(); + std::string txt = result ? "no hit" : "hit wall"; + auto durationCastMovementRay = std::chrono::duration_cast(t2CastMovementRay - t1CastMovementRay).count(); - std::cout << ">> CastMovementRay \t\t" << durationCastMovementRay << " ms" << std::endl; - std::cout << ">> Result: \t\t\t" << result << std::endl << std::endl; + std::cout << ">> CastMovementRay took " << durationCastMovementRay << " ms" << std::endl; + std::cout << ">> Result: " << txt << std::endl; } void TestGetPath(const int mapId, AmeisenNavigation& ameisenNavigation, const Vector3& startPosition, const Vector3& endPosition) { int pathSize = 0; - Vector3 path[MAX_PATH_LENGHT]; + Vector3 path[256]; std::chrono::high_resolution_clock::time_point t1GetPath = std::chrono::high_resolution_clock::now(); bool result = ameisenNavigation.GetPath(mapId, startPosition, endPosition, path, &pathSize); std::chrono::high_resolution_clock::time_point t2GetPath = std::chrono::high_resolution_clock::now(); auto durationGetPath = std::chrono::duration_cast(t2GetPath - t1GetPath).count(); - std::cout << ">> GetPath \t\t\t" << durationGetPath << " ms" << std::endl << std::endl; + std::cout << ">> GetPath took " << durationGetPath << " ms" << std::endl; if (result) { - std::cout << ">> Path size: \t\t\t" << pathSize << " Nodes" << std::endl; - std::cout << ">> Path Address: \t\t0x" << std::hex << path << "" << std::dec << std::endl << std::endl; + std::cout << ">> Path size: " << pathSize << " Nodes" << std::endl; // print the nodes for (int i = 0; i < pathSize; ++i) { - std::cout << std::fixed << std::setprecision(2) << ">> Node [" << i << "]: \t\t\t" << path[i] << std::endl; + std::cout << std::fixed << std::setprecision(2) << ">> Node [" << i << "]: " << path[i] << std::endl; } } else @@ -80,7 +90,7 @@ void TestLoadMmaps(int mapId, AmeisenNavigation& ameisenNavigation) std::chrono::high_resolution_clock::time_point t2LoadMmapsForContinent = std::chrono::high_resolution_clock::now(); auto durationtLoadMmapsForContinent = std::chrono::duration_cast(t2LoadMmapsForContinent - t1LoadMmapsForContinent).count(); - std::cout << ">> LoadMmapsForContinent \t" << durationtLoadMmapsForContinent << " ms" << std::endl << std::endl; + std::cout << ">> LoadMmapsForContinent took " << durationtLoadMmapsForContinent << " ms" << std::endl; } void TestMoveAlongSurface(const int mapId, AmeisenNavigation& ameisenNavigation, const Vector3& startPosition, const Vector3& endPosition) @@ -92,6 +102,32 @@ void TestMoveAlongSurface(const int mapId, AmeisenNavigation& ameisenNavigation, std::chrono::high_resolution_clock::time_point t2MoveAlongSurface = std::chrono::high_resolution_clock::now(); auto durationMoveAlongSurface = std::chrono::duration_cast(t2MoveAlongSurface - t1MoveAlongSurface).count(); - std::cout << ">> MoveAlongSurface \t\t" << durationMoveAlongSurface << " ms" << std::endl; - std::cout << std::fixed << std::setprecision(2) << ">> Target Position: \t\t" << moveAlongSurfacePoint << std::endl << std::endl; + std::cout << ">> MoveAlongSurface took " << durationMoveAlongSurface << " ms" << std::endl; + std::cout << std::fixed << std::setprecision(2) << ">> Target Position: " << moveAlongSurfacePoint << std::endl; +} + +void TestRandomPoint(const int mapId, AmeisenNavigation& ameisenNavigation) +{ + Vector3 getRandomPointPoint; + + std::chrono::high_resolution_clock::time_point t1GetRandomPoint = std::chrono::high_resolution_clock::now(); + ameisenNavigation.GetRandomPoint(mapId, &getRandomPointPoint); + std::chrono::high_resolution_clock::time_point t2GetRandomPoint = std::chrono::high_resolution_clock::now(); + + auto durationGetRandomPoint = std::chrono::duration_cast(t2GetRandomPoint - t1GetRandomPoint).count(); + std::cout << ">> GetRandomPoint took " << durationGetRandomPoint << " ms" << std::endl; + std::cout << std::fixed << std::setprecision(2) << ">> Target Position: " << getRandomPointPoint << std::endl; +} + +void TestRandomPointAround(const int mapId, AmeisenNavigation& ameisenNavigation, const Vector3& startPosition) +{ + Vector3 getRandomPointAroundPoint; + + std::chrono::high_resolution_clock::time_point t1GetRandomPointAround = std::chrono::high_resolution_clock::now(); + ameisenNavigation.GetRandomPointAround(mapId, startPosition, 32.f, &getRandomPointAroundPoint); + std::chrono::high_resolution_clock::time_point t2GetRandomPointAround = std::chrono::high_resolution_clock::now(); + + auto durationGetRandomPointAround = std::chrono::duration_cast(t2GetRandomPointAround - t1GetRandomPointAround).count(); + std::cout << ">> GetRandomPointAround took " << durationGetRandomPointAround << " ms" << std::endl; + std::cout << std::fixed << std::setprecision(2) << ">> Target Position: " << getRandomPointAroundPoint << std::endl; } \ No newline at end of file diff --git a/AmeisenNavigation.Demo/main.h b/AmeisenNavigation.Demo/main.h index 26a8168..134505e 100644 --- a/AmeisenNavigation.Demo/main.h +++ b/AmeisenNavigation.Demo/main.h @@ -11,5 +11,7 @@ void TestLoadMmaps(const int mapId, AmeisenNavigation& ameisenNavigation); void TestGetPath(const int mapId, AmeisenNavigation& ameisenNavigation, const Vector3& startPosition, const Vector3& endPosition); void TestCastMovementRay(const int mapId, AmeisenNavigation& ameisenNavigation, const Vector3& startPosition, const Vector3& endPosition); void TestMoveAlongSurface(const int mapId, AmeisenNavigation& ameisenNavigation, const Vector3& startPosition, const Vector3& endPosition); +void TestRandomPoint(const int mapId, AmeisenNavigation& ameisenNavigation); +void TestRandomPointAround(const int mapId, AmeisenNavigation& ameisenNavigation, const Vector3& startPosition); #endif // !_H_MAIN \ No newline at end of file diff --git a/AmeisenNavigation.Server/AmeisenNavigation.Server.csproj b/AmeisenNavigation.Server/AmeisenNavigation.Server.csproj index a6bfb33..fde8054 100644 --- a/AmeisenNavigation.Server/AmeisenNavigation.Server.csproj +++ b/AmeisenNavigation.Server/AmeisenNavigation.Server.csproj @@ -55,7 +55,7 @@ - ..\packages\Newtonsoft.Json.12.0.1\lib\net45\Newtonsoft.Json.dll + ..\packages\Newtonsoft.Json.12.0.3\lib\net45\Newtonsoft.Json.dll diff --git a/AmeisenNavigation.Server/App.config b/AmeisenNavigation.Server/App.config index ecdcf8a..a0d2eaa 100644 --- a/AmeisenNavigation.Server/App.config +++ b/AmeisenNavigation.Server/App.config @@ -1,6 +1,6 @@ - - + + - + \ No newline at end of file diff --git a/AmeisenNavigation.Server/Program.cs b/AmeisenNavigation.Server/Program.cs index 4ac1ae6..c46cef6 100644 --- a/AmeisenNavigation.Server/Program.cs +++ b/AmeisenNavigation.Server/Program.cs @@ -68,7 +68,7 @@ public static void EnterServerLoop() } } - public static List GetPath(Vector3 start, Vector3 end, int mapId, MovementType movementType, PathRequestFlags flags, string clientIp) + public static List GetPath(Vector3 start, Vector3 end, float maxRadius, int mapId, MovementType movementType, PathRequestFlags flags, string clientIp) { int pathSize; List path = new List(); @@ -102,13 +102,11 @@ public static List GetPath(Vector3 start, Vector3 end, int mapId, Movem { path = ChaikinCurve.Perform(path); } - break; case MovementType.MoveAlongSurface: float* surfacePath = AmeisenNav.MoveAlongSurface(mapId, pointerStart, pointerEnd); path.Add(new Vector3(surfacePath[0], surfacePath[1], surfacePath[2])); - break; case MovementType.CastMovementRay: @@ -122,7 +120,16 @@ public static List GetPath(Vector3 start, Vector3 end, int mapId, Movem // return none if target is not in line of sight path.Clear(); } + break; + + case MovementType.GetRandomPoint: + float* randomPoint = AmeisenNav.GetRandomPoint(mapId); + path.Add(new Vector3(randomPoint[0], randomPoint[1], randomPoint[2])); + break; + case MovementType.GetRandomPointAround: + float* randomPointAround = AmeisenNav.GetRandomPointAround(mapId, pointerStart, maxRadius); + path.Add(new Vector3(randomPointAround[0], randomPointAround[1], randomPointAround[2])); break; } } @@ -130,7 +137,7 @@ public static List GetPath(Vector3 start, Vector3 end, int mapId, Movem } sw.Stop(); - LogQueue.Enqueue(new LogEntry($"[{clientIp}] ", ConsoleColor.Green, $"{movementType} with {path.Count} Nodes took {sw.ElapsedMilliseconds}ms ({sw.ElapsedTicks} ticks)", LogLevel.INFO)); + LogQueue.Enqueue(new LogEntry($"[{clientIp}] ", ConsoleColor.Green, $"{movementType} with {path.Count}/{Settings.MaxPointPathCount} Nodes took {sw.ElapsedMilliseconds}ms ({sw.ElapsedTicks} ticks)", LogLevel.INFO)); return path; } @@ -154,7 +161,7 @@ public static void HandleClient(TcpClient client) { PathRequest pathRequest = JsonConvert.DeserializeObject(rawData); - List path = GetPath(pathRequest.A, pathRequest.B, pathRequest.MapId, pathRequest.MovementType, pathRequest.Flags, client.Client.RemoteEndPoint.ToString()); + List path = GetPath(pathRequest.A, pathRequest.B, pathRequest.MaxRadius, pathRequest.MapId, pathRequest.MovementType, pathRequest.Flags, client.Client.RemoteEndPoint.ToString()); writer.WriteLine($"{JsonConvert.SerializeObject(path)}>"); writer.Flush(); @@ -179,26 +186,27 @@ public static void LoggingThreadRoutine() { while (!stopServer || LogQueue.Count > 0) { - if (LogQueue.TryDequeue(out LogEntry logEntry)) + StringBuilder sb = new StringBuilder(); + + while (LogQueue.TryDequeue(out LogEntry logEntry)) { if (logEntry.LogLevel >= Settings.LogLevel) { string logString = ColoredPrint(logEntry.ColoredPart, logEntry.Color, logEntry.UncoloredPart, logEntry.LogLevel); if (Settings.LogToFile) { - try - { - File.AppendAllText(Settings.LogFilePath, logString); - } - catch - { - // ignored, if we cant write to file we cant log it lmao - } + sb.AppendLine(logString); } } } - Thread.Sleep(1); + try + { + File.WriteAllText(Settings.LogFilePath, sb.ToString()); + } + catch { } + + Thread.Sleep(500); } } @@ -227,7 +235,8 @@ public static void Main() } else { - AmeisenNav = new AmeisenNav(Settings.MmapsFolder.Replace('/', '\\')); + Settings.MmapsFolder = Settings.MmapsFolder.Replace('/', '\\'); + AmeisenNav = new AmeisenNav(Settings.MmapsFolder, Settings.MaxPolyPathCount, Settings.MaxPointPathCount); if (Settings.PreloadMaps.Length > 0) { @@ -237,7 +246,7 @@ public static void Main() TcpListener = new TcpListener(IPAddress.Parse(Settings.IpAddress), Settings.Port); TcpListener.Start(); - LogQueue.Enqueue(new LogEntry($"{Settings.IpAddress}:{Settings.Port} press Ctrl + C to exit...", ConsoleColor.Green, string.Empty, LogLevel.MASTER)); + LogQueue.Enqueue(new LogEntry($"Listening on {Settings.IpAddress}:{Settings.Port} press Ctrl + C to exit...", ConsoleColor.Green, string.Empty, LogLevel.MASTER)); EnterServerLoop(); @@ -297,7 +306,9 @@ private static Settings LoadConfigFile() CheckForLogFileExistence(); } - LogQueue.Enqueue(new LogEntry($"Loaded config file", ConsoleColor.Green)); + LogQueue.Enqueue(new LogEntry($"MaxPolyPathCount = {settings.MaxPolyPathCount}", ConsoleColor.White)); + LogQueue.Enqueue(new LogEntry($"MaxPointPathCount = {settings.MaxPointPathCount}", ConsoleColor.White)); + LogQueue.Enqueue(new LogEntry("Loaded config file", ConsoleColor.Green)); } else { diff --git a/AmeisenNavigation.Server/Properties/AssemblyInfo.cs b/AmeisenNavigation.Server/Properties/AssemblyInfo.cs index 6b6d85b..26ca544 100644 --- a/AmeisenNavigation.Server/Properties/AssemblyInfo.cs +++ b/AmeisenNavigation.Server/Properties/AssemblyInfo.cs @@ -6,10 +6,10 @@ [assembly: AssemblyConfiguration("")] [assembly: AssemblyCompany("")] [assembly: AssemblyProduct("AmeisenNavigationServer")] -[assembly: AssemblyCopyright("Copyright © Jannis Höschele 2018")] +[assembly: AssemblyCopyright("")] [assembly: AssemblyTrademark("")] [assembly: AssemblyCulture("")] [assembly: ComVisible(false)] [assembly: Guid("94dd9098-c900-4e3b-8d06-01157198914e")] -[assembly: AssemblyVersion("1.3.4.0")] -[assembly: AssemblyFileVersion("1.3.4.0")] \ No newline at end of file +[assembly: AssemblyVersion("1.4.0.0")] +[assembly: AssemblyFileVersion("1.4.0.0")] \ No newline at end of file diff --git a/AmeisenNavigation.Server/objects/Enums/MovementType.cs b/AmeisenNavigation.Server/objects/Enums/MovementType.cs index 2edd401..c2372f0 100644 --- a/AmeisenNavigation.Server/objects/Enums/MovementType.cs +++ b/AmeisenNavigation.Server/objects/Enums/MovementType.cs @@ -4,6 +4,8 @@ public enum MovementType { MoveToPosition, CastMovementRay, - MoveAlongSurface + MoveAlongSurface, + GetRandomPoint, + GetRandomPointAround, } } \ No newline at end of file diff --git a/AmeisenNavigation.Server/objects/PathRequest.cs b/AmeisenNavigation.Server/objects/PathRequest.cs index b2c43c1..dd78092 100644 --- a/AmeisenNavigation.Server/objects/PathRequest.cs +++ b/AmeisenNavigation.Server/objects/PathRequest.cs @@ -4,10 +4,11 @@ namespace AmeisenNavigation.Server.Objects { public struct PathRequest { - public PathRequest(Vector3 a, Vector3 b, int mapId, PathRequestFlags flags = PathRequestFlags.None, MovementType movementType = MovementType.MoveToPosition) + public PathRequest(Vector3 a, Vector3 b, float maxRadius, int mapId, PathRequestFlags flags = PathRequestFlags.None, MovementType movementType = MovementType.MoveToPosition) { A = a; B = b; + MaxRadius = maxRadius; MapId = mapId; Flags = flags; MovementType = movementType; @@ -21,6 +22,8 @@ public PathRequest(Vector3 a, Vector3 b, int mapId, PathRequestFlags flags = Pat public int MapId { get; set; } + public float MaxRadius { get; set; } + public MovementType MovementType { get; set; } public static bool operator !=(PathRequest left, PathRequest right) @@ -45,7 +48,7 @@ public override int GetHashCode() { unchecked { - return (int)(17 + (A.GetHashCode() * 23) + (B.GetHashCode() * 23) + (MapId * 23) + ((int)Flags * 23) + ((int)MovementType * 23)); + return (int)(17 + (A.GetHashCode() * 23) + (B.GetHashCode() * 23) + (MaxRadius * 23) + (MapId * 23) + ((int)Flags * 23) + ((int)MovementType * 23)); } } } diff --git a/AmeisenNavigation.Server/objects/Settings.cs b/AmeisenNavigation.Server/objects/Settings.cs index 8ae4f41..7294aaa 100644 --- a/AmeisenNavigation.Server/objects/Settings.cs +++ b/AmeisenNavigation.Server/objects/Settings.cs @@ -16,6 +16,12 @@ public class Settings [JsonProperty("logToFile")] public bool LogToFile { get; set; } = false; + [JsonProperty("maxPointPathCount")] + public int MaxPointPathCount { get; set; } = 256; + + [JsonProperty("maxPolyPathCount")] + public int MaxPolyPathCount { get; set; } = 512; + [JsonProperty("mmapsFolder")] public string MmapsFolder { get; set; } = "C:\\mmaps\\"; @@ -27,7 +33,4 @@ public class Settings [JsonProperty("removeOldLog")] public bool RemoveOldLog { get; set; } = true; - - [JsonProperty("vmapsFolder")] - public string VmapsFolder { get; set; } = "C:\\vmaps\\"; } \ No newline at end of file diff --git a/AmeisenNavigation.Server/packages.config b/AmeisenNavigation.Server/packages.config index 466ab76..a9de8b5 100644 --- a/AmeisenNavigation.Server/packages.config +++ b/AmeisenNavigation.Server/packages.config @@ -1,4 +1,4 @@  - + \ No newline at end of file diff --git a/AmeisenNavigation.Wrapper/AmeisenNavigationWrapper.h b/AmeisenNavigation.Wrapper/AmeisenNavigationWrapper.h index 26c3364..745252e 100644 --- a/AmeisenNavigation.Wrapper/AmeisenNavigationWrapper.h +++ b/AmeisenNavigation.Wrapper/AmeisenNavigationWrapper.h @@ -13,6 +13,8 @@ namespace AmeisenNavigationWrapper { private: AmeisenNavigation* ameisen_nav; + int maxPolyPath; + int maxPointPath; public: /// @@ -22,9 +24,11 @@ namespace AmeisenNavigationWrapper /// one position to another. /// /// The folder containing the extracted mmaps - AmeisenNav(String^ mmap_dir) + AmeisenNav(String^ mmap_dir, int maxPolyPathLenght, int maxPointPathLenght) + : ameisen_nav(new AmeisenNavigation(msclr::interop::marshal_as(mmap_dir), maxPolyPathLenght, maxPointPathLenght)), + maxPolyPath(maxPolyPathLenght), + maxPointPath(maxPointPathLenght) { - ameisen_nav = new AmeisenNavigation(msclr::interop::marshal_as(mmap_dir)); } ~AmeisenNav() @@ -63,6 +67,20 @@ namespace AmeisenNavigationWrapper return positionToGoTo; } + float* GetRandomPoint(int map_id) + { + float* positionToGoTo = new float[3]; + ameisen_nav->GetRandomPoint(map_id, reinterpret_cast(positionToGoTo)); + return positionToGoTo; + } + + float* GetRandomPointAround(int map_id, float start[], float maxRadius) + { + float* positionToGoTo = new float[3]; + ameisen_nav->GetRandomPointAround(map_id, start, maxRadius, reinterpret_cast(positionToGoTo)); + return positionToGoTo; + } + /// /// Use this method if you dont want to mess around /// with an unsafe pointer in your code, the path @@ -76,7 +94,7 @@ namespace AmeisenNavigationWrapper /// Pointer to the array of waypoints float* GetPath(int map_id, float start[], float end[], int* path_size) { - float* path = new float[MAX_PATH_LENGHT * 3]; + float* path = new float[maxPointPath * 3]; ameisen_nav->GetPath(map_id, start, end, reinterpret_cast(path), path_size); return path; } diff --git a/AmeisenNavigation/ameisennavigation.cpp b/AmeisenNavigation/ameisennavigation.cpp index 61b4b06..b593b8f 100644 --- a/AmeisenNavigation/ameisennavigation.cpp +++ b/AmeisenNavigation/ameisennavigation.cpp @@ -1,8 +1,18 @@ #include "ameisennavigation.h" -AmeisenNavigation::AmeisenNavigation(const std::string& mmapFolder) - : m_MmapFolder(mmapFolder) +AmeisenNavigation::AmeisenNavigation(const std::string& mmapFolder, int maxPolyPathLenght, int maxPointPathLenght) + : m_MmapFolder(mmapFolder), + maxPolyPath(maxPolyPathLenght), + maxPointPath(maxPointPathLenght), + m_QueryFilter(dtQueryFilter()), + m_NavMeshMap(std::unordered_map()), + m_NavMeshQueryMap(std::unordered_map()) { + m_QueryFilter.setIncludeFlags(NAV_GROUND | NAV_WATER); + m_QueryFilter.setExcludeFlags(NAV_EMPTY | NAV_GROUND_STEEP | NAV_MAGMA_SLIME); + + // seed the random generator + srand(static_cast(time(0))); } std::string AmeisenNavigation::FormatTrailingZeros(const int number, const int zeroCount) @@ -62,16 +72,16 @@ bool AmeisenNavigation::GetPath(const int mapId, const Vector3& startPosition, c } else { - dtPolyRef polypath[MAX_PATH_LENGHT]; + dtPolyRef* polypath = new dtPolyRef[maxPolyPath]; int polypathSize = 0; - if (dtStatusSucceed(m_NavMeshQueryMap[mapId]->findPath(startPoly, endPoly, reinterpret_cast(&closestPointStart), reinterpret_cast(&closestPointEnd), &m_QueryFilter, polypath, &polypathSize, MAX_PATH_LENGHT))) + if (dtStatusSucceed(m_NavMeshQueryMap[mapId]->findPath(startPoly, endPoly, reinterpret_cast(&closestPointStart), reinterpret_cast(&closestPointEnd), &m_QueryFilter, polypath, &polypathSize, maxPolyPath))) { - D(std::cout << ">> PolyPath size: " << polypathSize << std::endl); + D(std::cout << ">> PolyPath size: " << polypathSize << "/" << maxPolyPath << std::endl); - if (dtStatusSucceed(m_NavMeshQueryMap[mapId]->findStraightPath(reinterpret_cast(&closestPointStart), reinterpret_cast(&closestPointEnd), polypath, polypathSize, reinterpret_cast(path), nullptr, nullptr, pathSize, MAX_PATH_LENGHT))) + if (dtStatusSucceed(m_NavMeshQueryMap[mapId]->findStraightPath(reinterpret_cast(&closestPointStart), reinterpret_cast(&closestPointEnd), polypath, polypathSize, reinterpret_cast(path), nullptr, nullptr, pathSize, maxPointPath))) { - D(std::cout << ">> PointPath size: " << (*pathSize) << std::endl); + D(std::cout << ">> PointPath size: " << (*pathSize) << "/" << maxPointPath << std::endl); // convert to Recast and Detour coordinates to Wow coordinates for (int i = 0; i < (*pathSize); ++i) @@ -79,6 +89,7 @@ bool AmeisenNavigation::GetPath(const int mapId, const Vector3& startPosition, c path[i] = RDToWowCoords(path[i]); } + delete[] polypath; return true; } else @@ -93,6 +104,7 @@ bool AmeisenNavigation::GetPath(const int mapId, const Vector3& startPosition, c *pathSize = 0; path = nullptr; + delete[] polypath; return false; } } @@ -146,6 +158,53 @@ bool AmeisenNavigation::MoveAlongSurface(const int mapId, const Vector3& startPo return false; } +bool AmeisenNavigation::GetRandomPoint(const int mapId, Vector3* position) +{ + D(std::cout << ">> GetRandomPoint (" << mapId << ")" << std::endl); + + if (!PreparePathfinding(mapId, nullptr)) + { + return false; + } + + dtPolyRef polyRef; + if (dtStatusSucceed(m_NavMeshQueryMap[mapId]->findRandomPoint(&m_QueryFilter, []() { return (float)rand() / (float)(RAND_MAX); }, &polyRef, reinterpret_cast(position)))) + { + *position = RDToWowCoords(*position); + D(std::cout << ">> Found random position " << *position << std::endl); + return true; + } + + return false; +} + +bool AmeisenNavigation::GetRandomPointAround(const int mapId, const Vector3& startPosition, float radius, Vector3* position) +{ + D(std::cout << ">> GetRandomPointAround (" << mapId << ") startPosition: " << startPosition << " radius: " << radius << std::endl); + + if (!PreparePathfinding(mapId, nullptr)) + { + return false; + } + + Vector3 startPositionRd = WowToRDCoords(startPosition); + + Vector3 closestPoint; + dtPolyRef startPoly = GetNearestPoly(mapId, startPositionRd, &closestPoint); + + D(std::cout << ">> GetRandomPointAround (" << mapId << ") closestPoint: " << closestPoint << " startPoly: " << startPoly << std::endl); + + dtPolyRef polyRef; + if (dtStatusSucceed(m_NavMeshQueryMap[mapId]->findRandomPointAroundCircle(startPoly, reinterpret_cast(&closestPoint), radius, &m_QueryFilter, []() { return (float)rand() / (float)(RAND_MAX); }, &polyRef, reinterpret_cast(position)))) + { + *position = RDToWowCoords(*position); + D(std::cout << ">> Found random position " << *position << std::endl); + return true; + } + + return false; +} + bool AmeisenNavigation::CastMovementRay(const int mapId, const Vector3& startPosition, const Vector3& endPosition) { D(std::cout << ">> CastMovementRay (" << mapId << ") " << startPosition << " -> " << endPosition << std::endl); @@ -163,12 +222,12 @@ bool AmeisenNavigation::CastMovementRay(const int mapId, const Vector3& startPos dtStatus result = m_NavMeshQueryMap[mapId]->raycast(startPoly, reinterpret_cast(&startPositionRd), reinterpret_cast(&endPositionRd), &m_QueryFilter, 0, &raycastHit); - return dtStatusSucceed(result) && raycastHit.t != FLT_MAX; + return dtStatusSucceed(result) && raycastHit.t == FLT_MAX; } dtPolyRef AmeisenNavigation::GetNearestPoly(const int mapId, const Vector3& position, Vector3* closestPointOnPoly) { - float extents[3] = { 8.0f, 8.0f, 8.0f }; + float extents[3] = { 12.0f, 12.0f, 12.0f }; dtPolyRef polyRef; m_NavMeshQueryMap[mapId]->findNearestPoly(reinterpret_cast(&position), extents, &m_QueryFilter, &polyRef, reinterpret_cast(closestPointOnPoly)); @@ -233,6 +292,18 @@ bool AmeisenNavigation::LoadMmapsForContinent(const int mapId) MmapTileHeader mmapTileHeader; mmapTileStream.read(reinterpret_cast(&mmapTileHeader), sizeof(MmapTileHeader)); + if (mmapTileHeader.mmapMagic != MMAP_MAGIC) + { + std::cerr << ">> Wrong MMAP Magic (got:" << mmapTileHeader.mmapMagic << ", expected:" << MMAP_MAGIC << ") dtTile " << x << " " << y << " (mapId: " << mapId << ")" << std::endl; + return false; + } + + if (mmapTileHeader.mmapVersion != MMAP_VERSION) + { + std::cerr << ">> Wrong MMAP version (got:" << mmapTileHeader.mmapVersion << ", expected:" << MMAP_VERSION << ") dtTile " << x << " " << y << " (mapId: " << mapId << ")" << std::endl; + return false; + } + // read the NavMesh Tile data void* mmapTileData = dtAlloc(mmapTileHeader.size, DT_ALLOC_PERM); mmapTileStream.read(reinterpret_cast(mmapTileData), mmapTileHeader.size); @@ -253,7 +324,7 @@ bool AmeisenNavigation::LoadMmapsForContinent(const int mapId) // init the NavMeshQuery m_NavMeshQueryMap[mapId] = dtAllocNavMeshQuery(); - if (dtStatusFailed(m_NavMeshQueryMap[mapId]->init(m_NavMeshMap[mapId], MAX_PATH_LENGHT))) + if (dtStatusFailed(m_NavMeshQueryMap[mapId]->init(m_NavMeshMap[mapId], 65535))) { std::cerr << ">> Failed to init NavMeshQuery (mapId: " << mapId << ")" << std::endl; diff --git a/AmeisenNavigation/ameisennavigation.h b/AmeisenNavigation/ameisennavigation.h index 1bb8ba6..d98e573 100644 --- a/AmeisenNavigation/ameisennavigation.h +++ b/AmeisenNavigation/ameisennavigation.h @@ -14,22 +14,31 @@ #include "../recastnavigation/Detour/Include/DetourNavMesh.h" #include "../recastnavigation/Detour/Include/DetourNavMeshQuery.h" -#ifdef DEBUG +#ifdef _DEBUG #define D(x) x #else #define D(x) #endif constexpr int MMAP_MAGIC = 0x4D4D4150; -constexpr int MMAP_VERSION = 10; -constexpr int MAX_PATH_LENGHT = 1024; +constexpr int MMAP_VERSION = 12; -enum NavTerrain +enum NavArea { - NAV_EMPTY = 0, - NAV_MAGMA_SLIME = 61, - NAV_WATER = 62, - NAV_GROUND = 63 + NAV_AREA_EMPTY = 0, + NAV_AREA_GROUND = 11, + NAV_AREA_GROUND_STEEP = 10, + NAV_AREA_WATER = 9, + NAV_AREA_MAGMA_SLIME = 8, +}; + +enum NavTerrainFlag +{ + NAV_EMPTY = 0x00, + NAV_GROUND = 1 << (NAV_AREA_GROUND - NAV_AREA_GROUND), + NAV_GROUND_STEEP = 1 << (NAV_AREA_GROUND - NAV_AREA_GROUND_STEEP), + NAV_WATER = 1 << (NAV_AREA_GROUND - NAV_AREA_WATER), + NAV_MAGMA_SLIME = 1 << (NAV_AREA_GROUND - NAV_AREA_MAGMA_SLIME) }; struct MmapTileHeader @@ -45,6 +54,8 @@ struct MmapTileHeader class AmeisenNavigation { private: + int maxPolyPath; + int maxPointPath; std::string m_MmapFolder; dtQueryFilter m_QueryFilter; std::unordered_map m_NavMeshMap; @@ -56,7 +67,7 @@ class AmeisenNavigation std::string FormatTrailingZeros(const int number, const int zeroCount); public: - AmeisenNavigation(const std::string& mmapFolder); + AmeisenNavigation(const std::string& mmapFolder, int maxPolyPathLenght, int maxPointPathLenght); bool LoadMmapsForContinent(const int mapId); bool IsMmapLoaded(const int mapId); @@ -65,6 +76,8 @@ class AmeisenNavigation bool GetPath(int mapId, const Vector3& startPosition, const Vector3& endPosition, Vector3* path, int* pathSize); bool MoveAlongSurface(const int mapId, const Vector3& startPosition, const Vector3& endPosition, Vector3* positionToGoTo); bool CastMovementRay(const int mapId, const Vector3& startPosition, const Vector3& endPosition); + bool GetRandomPoint(const int mapId, Vector3* position); + bool GetRandomPointAround(const int mapId, const Vector3& startPosition, float radius, Vector3* position); }; #endif diff --git a/recastnavigation/Recast/CMakeLists.txt b/recastnavigation/Recast/CMakeLists.txt deleted file mode 100644 index 0346d74..0000000 --- a/recastnavigation/Recast/CMakeLists.txt +++ /dev/null @@ -1,40 +0,0 @@ -# This file is part of the TrinityCore Project. See AUTHORS file for Copyright information -# -# This file is free software; as a special exception the author gives -# unlimited permission to copy and/or distribute it, with or without -# modifications, as long as this notice is preserved. -# -# This program is distributed in the hope that it will be useful, but -# WITHOUT ANY WARRANTY, to the extent permitted by law; without even the -# implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. - -set(Recast_STAT_SRCS - Source/Recast.cpp - Source/RecastAlloc.cpp - Source/RecastAssert.cpp - Source/RecastArea.cpp - Source/RecastContour.cpp - Source/RecastFilter.cpp - Source/RecastLayers.cpp - Source/RecastMesh.cpp - Source/RecastMeshDetail.cpp - Source/RecastRasterization.cpp - Source/RecastRegion.cpp -) - -add_library(Recast STATIC ${Recast_STAT_SRCS}) - -target_include_directories(Recast - PUBLIC - ${CMAKE_CURRENT_SOURCE_DIR}/Include) - -target_link_libraries(Recast - PRIVATE - trinity-dependency-interface - PUBLIC - zlib) - -set_target_properties(Recast - PROPERTIES - FOLDER - "dep") diff --git a/recastnavigation/Recast/Include/Recast.h b/recastnavigation/Recast/Include/Recast.h deleted file mode 100644 index fa25a98..0000000 --- a/recastnavigation/Recast/Include/Recast.h +++ /dev/null @@ -1,1208 +0,0 @@ -// -// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org -// -// This software is provided 'as-is', without any express or implied -// warranty. In no event will the authors be held liable for any damages -// arising from the use of this software. -// Permission is granted to anyone to use this software for any purpose, -// including commercial applications, and to alter it and redistribute it -// freely, subject to the following restrictions: -// 1. The origin of this software must not be misrepresented; you must not -// claim that you wrote the original software. If you use this software -// in a product, an acknowledgment in the product documentation would be -// appreciated but is not required. -// 2. Altered source versions must be plainly marked as such, and must not be -// misrepresented as being the original software. -// 3. This notice may not be removed or altered from any source distribution. -// - -#ifndef RECAST_H -#define RECAST_H - -/// The value of PI used by Recast. -static const float RC_PI = 3.14159265f; - -/// Recast log categories. -/// @see rcContext -enum rcLogCategory -{ - RC_LOG_PROGRESS = 1, ///< A progress log entry. - RC_LOG_WARNING, ///< A warning log entry. - RC_LOG_ERROR, ///< An error log entry. -}; - -/// Recast performance timer categories. -/// @see rcContext -enum rcTimerLabel -{ - /// The user defined total time of the build. - RC_TIMER_TOTAL, - /// A user defined build time. - RC_TIMER_TEMP, - /// The time to rasterize the triangles. (See: #rcRasterizeTriangle) - RC_TIMER_RASTERIZE_TRIANGLES, - /// The time to build the compact heightfield. (See: #rcBuildCompactHeightfield) - RC_TIMER_BUILD_COMPACTHEIGHTFIELD, - /// The total time to build the contours. (See: #rcBuildContours) - RC_TIMER_BUILD_CONTOURS, - /// The time to trace the boundaries of the contours. (See: #rcBuildContours) - RC_TIMER_BUILD_CONTOURS_TRACE, - /// The time to simplify the contours. (See: #rcBuildContours) - RC_TIMER_BUILD_CONTOURS_SIMPLIFY, - /// The time to filter ledge spans. (See: #rcFilterLedgeSpans) - RC_TIMER_FILTER_BORDER, - /// The time to filter low height spans. (See: #rcFilterWalkableLowHeightSpans) - RC_TIMER_FILTER_WALKABLE, - /// The time to apply the median filter. (See: #rcMedianFilterWalkableArea) - RC_TIMER_MEDIAN_AREA, - /// The time to filter low obstacles. (See: #rcFilterLowHangingWalkableObstacles) - RC_TIMER_FILTER_LOW_OBSTACLES, - /// The time to build the polygon mesh. (See: #rcBuildPolyMesh) - RC_TIMER_BUILD_POLYMESH, - /// The time to merge polygon meshes. (See: #rcMergePolyMeshes) - RC_TIMER_MERGE_POLYMESH, - /// The time to erode the walkable area. (See: #rcErodeWalkableArea) - RC_TIMER_ERODE_AREA, - /// The time to mark a box area. (See: #rcMarkBoxArea) - RC_TIMER_MARK_BOX_AREA, - /// The time to mark a cylinder area. (See: #rcMarkCylinderArea) - RC_TIMER_MARK_CYLINDER_AREA, - /// The time to mark a convex polygon area. (See: #rcMarkConvexPolyArea) - RC_TIMER_MARK_CONVEXPOLY_AREA, - /// The total time to build the distance field. (See: #rcBuildDistanceField) - RC_TIMER_BUILD_DISTANCEFIELD, - /// The time to build the distances of the distance field. (See: #rcBuildDistanceField) - RC_TIMER_BUILD_DISTANCEFIELD_DIST, - /// The time to blur the distance field. (See: #rcBuildDistanceField) - RC_TIMER_BUILD_DISTANCEFIELD_BLUR, - /// The total time to build the regions. (See: #rcBuildRegions, #rcBuildRegionsMonotone) - RC_TIMER_BUILD_REGIONS, - /// The total time to apply the watershed algorithm. (See: #rcBuildRegions) - RC_TIMER_BUILD_REGIONS_WATERSHED, - /// The time to expand regions while applying the watershed algorithm. (See: #rcBuildRegions) - RC_TIMER_BUILD_REGIONS_EXPAND, - /// The time to flood regions while applying the watershed algorithm. (See: #rcBuildRegions) - RC_TIMER_BUILD_REGIONS_FLOOD, - /// The time to filter out small regions. (See: #rcBuildRegions, #rcBuildRegionsMonotone) - RC_TIMER_BUILD_REGIONS_FILTER, - /// The time to build heightfield layers. (See: #rcBuildHeightfieldLayers) - RC_TIMER_BUILD_LAYERS, - /// The time to build the polygon mesh detail. (See: #rcBuildPolyMeshDetail) - RC_TIMER_BUILD_POLYMESHDETAIL, - /// The time to merge polygon mesh details. (See: #rcMergePolyMeshDetails) - RC_TIMER_MERGE_POLYMESHDETAIL, - /// The maximum number of timers. (Used for iterating timers.) - RC_MAX_TIMERS -}; - -/// Provides an interface for optional logging and performance tracking of the Recast -/// build process. -/// @ingroup recast -class rcContext -{ -public: - - /// Contructor. - /// @param[in] state TRUE if the logging and performance timers should be enabled. [Default: true] - inline rcContext(bool state = true) : m_logEnabled(state), m_timerEnabled(state) {} - virtual ~rcContext() {} - - /// Enables or disables logging. - /// @param[in] state TRUE if logging should be enabled. - inline void enableLog(bool state) { m_logEnabled = state; } - - /// Clears all log entries. - inline void resetLog() { if (m_logEnabled) doResetLog(); } - - /// Logs a message. - /// @param[in] category The category of the message. - /// @param[in] format The message. - void log(const rcLogCategory category, const char* format, ...); - - /// Enables or disables the performance timers. - /// @param[in] state TRUE if timers should be enabled. - inline void enableTimer(bool state) { m_timerEnabled = state; } - - /// Clears all peformance timers. (Resets all to unused.) - inline void resetTimers() { if (m_timerEnabled) doResetTimers(); } - - /// Starts the specified performance timer. - /// @param label The category of the timer. - inline void startTimer(const rcTimerLabel label) { if (m_timerEnabled) doStartTimer(label); } - - /// Stops the specified performance timer. - /// @param label The category of the timer. - inline void stopTimer(const rcTimerLabel label) { if (m_timerEnabled) doStopTimer(label); } - - /// Returns the total accumulated time of the specified performance timer. - /// @param label The category of the timer. - /// @return The accumulated time of the timer, or -1 if timers are disabled or the timer has never been started. - inline int getAccumulatedTime(const rcTimerLabel label) const { return m_timerEnabled ? doGetAccumulatedTime(label) : -1; } - -protected: - - /// Clears all log entries. - virtual void doResetLog() {} - - /// Logs a message. - /// @param[in] category The category of the message. - /// @param[in] msg The formatted message. - /// @param[in] len The length of the formatted message. - virtual void doLog(const rcLogCategory /*category*/, const char* /*msg*/, const int /*len*/) {} - - /// Clears all timers. (Resets all to unused.) - virtual void doResetTimers() {} - - /// Starts the specified performance timer. - /// @param[in] label The category of timer. - virtual void doStartTimer(const rcTimerLabel /*label*/) {} - - /// Stops the specified performance timer. - /// @param[in] label The category of the timer. - virtual void doStopTimer(const rcTimerLabel /*label*/) {} - - /// Returns the total accumulated time of the specified performance timer. - /// @param[in] label The category of the timer. - /// @return The accumulated time of the timer, or -1 if timers are disabled or the timer has never been started. - virtual int doGetAccumulatedTime(const rcTimerLabel /*label*/) const { return -1; } - - /// True if logging is enabled. - bool m_logEnabled; - - /// True if the performance timers are enabled. - bool m_timerEnabled; -}; - -/// A helper to first start a timer and then stop it when this helper goes out of scope. -/// @see rcContext -class rcScopedTimer -{ -public: - /// Constructs an instance and starts the timer. - /// @param[in] ctx The context to use. - /// @param[in] label The category of the timer. - inline rcScopedTimer(rcContext* ctx, const rcTimerLabel label) : m_ctx(ctx), m_label(label) { m_ctx->startTimer(m_label); } - inline ~rcScopedTimer() { m_ctx->stopTimer(m_label); } - -private: - // Explicitly disabled copy constructor and copy assignment operator. - rcScopedTimer(const rcScopedTimer&); - rcScopedTimer& operator=(const rcScopedTimer&); - - rcContext* const m_ctx; - const rcTimerLabel m_label; -}; - -/// Specifies a configuration to use when performing Recast builds. -/// @ingroup recast -struct rcConfig -{ - /// The width of the field along the x-axis. [Limit: >= 0] [Units: vx] - int width; - - /// The height of the field along the z-axis. [Limit: >= 0] [Units: vx] - int height; - - /// The width/height size of tile's on the xz-plane. [Limit: >= 0] [Units: vx] - int tileSize; - - /// The size of the non-navigable border around the heightfield. [Limit: >=0] [Units: vx] - int borderSize; - - /// The xz-plane cell size to use for fields. [Limit: > 0] [Units: wu] - float cs; - - /// The y-axis cell size to use for fields. [Limit: > 0] [Units: wu] - float ch; - - /// The minimum bounds of the field's AABB. [(x, y, z)] [Units: wu] - float bmin[3]; - - /// The maximum bounds of the field's AABB. [(x, y, z)] [Units: wu] - float bmax[3]; - - /// The maximum slope that is considered walkable. [Limits: 0 <= value < 90] [Units: Degrees] - float walkableSlopeAngle; - - /// Minimum floor to 'ceiling' height that will still allow the floor area to - /// be considered walkable. [Limit: >= 3] [Units: vx] - int walkableHeight; - - /// Maximum ledge height that is considered to still be traversable. [Limit: >=0] [Units: vx] - int walkableClimb; - - /// The distance to erode/shrink the walkable area of the heightfield away from - /// obstructions. [Limit: >=0] [Units: vx] - int walkableRadius; - - /// The maximum allowed length for contour edges along the border of the mesh. [Limit: >=0] [Units: vx] - int maxEdgeLen; - - /// The maximum distance a simplfied contour's border edges should deviate - /// the original raw contour. [Limit: >=0] [Units: vx] - float maxSimplificationError; - - /// The minimum number of cells allowed to form isolated island areas. [Limit: >=0] [Units: vx] - int minRegionArea; - - /// Any regions with a span count smaller than this value will, if possible, - /// be merged with larger regions. [Limit: >=0] [Units: vx] - int mergeRegionArea; - - /// The maximum number of vertices allowed for polygons generated during the - /// contour to polygon conversion process. [Limit: >= 3] - int maxVertsPerPoly; - - /// Sets the sampling distance to use when generating the detail mesh. - /// (For height detail only.) [Limits: 0 or >= 0.9] [Units: wu] - float detailSampleDist; - - /// The maximum distance the detail mesh surface should deviate from heightfield - /// data. (For height detail only.) [Limit: >=0] [Units: wu] - float detailSampleMaxError; -}; - -/// Defines the number of bits allocated to rcSpan::smin and rcSpan::smax. -static const int RC_SPAN_HEIGHT_BITS = 16; -/// Defines the maximum value for rcSpan::smin and rcSpan::smax. -static const int RC_SPAN_MAX_HEIGHT = (1 << RC_SPAN_HEIGHT_BITS) - 1; - -/// The number of spans allocated per span spool. -/// @see rcSpanPool -static const int RC_SPANS_PER_POOL = 2048; - -/// Represents a span in a heightfield. -/// @see rcHeightfield -struct rcSpan -{ - unsigned int smin : RC_SPAN_HEIGHT_BITS; ///< The lower limit of the span. [Limit: < #smax] - unsigned int smax : RC_SPAN_HEIGHT_BITS; ///< The upper limit of the span. [Limit: <= #RC_SPAN_MAX_HEIGHT] - unsigned char area; ///< The area id assigned to the span. - rcSpan* next; ///< The next span higher up in column. -}; - -/// A memory pool used for quick allocation of spans within a heightfield. -/// @see rcHeightfield -struct rcSpanPool -{ - rcSpanPool* next; ///< The next span pool. - rcSpan items[RC_SPANS_PER_POOL]; ///< Array of spans in the pool. -}; - -/// A dynamic heightfield representing obstructed space. -/// @ingroup recast -struct rcHeightfield -{ - rcHeightfield(); - ~rcHeightfield(); - - int width; ///< The width of the heightfield. (Along the x-axis in cell units.) - int height; ///< The height of the heightfield. (Along the z-axis in cell units.) - float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)] - float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)] - float cs; ///< The size of each cell. (On the xz-plane.) - float ch; ///< The height of each cell. (The minimum increment along the y-axis.) - rcSpan** spans; ///< Heightfield of spans (width*height). - rcSpanPool* pools; ///< Linked list of span pools. - rcSpan* freelist; ///< The next free span. - -private: - // Explicitly-disabled copy constructor and copy assignment operator. - rcHeightfield(const rcHeightfield&); - rcHeightfield& operator=(const rcHeightfield&); -}; - -/// Provides information on the content of a cell column in a compact heightfield. -struct rcCompactCell -{ - unsigned int index : 24; ///< Index to the first span in the column. - unsigned int count : 8; ///< Number of spans in the column. -}; - -/// Represents a span of unobstructed space within a compact heightfield. -struct rcCompactSpan -{ - unsigned short y; ///< The lower extent of the span. (Measured from the heightfield's base.) - unsigned short reg; ///< The id of the region the span belongs to. (Or zero if not in a region.) - unsigned int con : 24; ///< Packed neighbor connection data. - unsigned int h : 8; ///< The height of the span. (Measured from #y.) -}; - -/// A compact, static heightfield representing unobstructed space. -/// @ingroup recast -struct rcCompactHeightfield -{ - rcCompactHeightfield(); - ~rcCompactHeightfield(); - int width; ///< The width of the heightfield. (Along the x-axis in cell units.) - int height; ///< The height of the heightfield. (Along the z-axis in cell units.) - int spanCount; ///< The number of spans in the heightfield. - int walkableHeight; ///< The walkable height used during the build of the field. (See: rcConfig::walkableHeight) - int walkableClimb; ///< The walkable climb used during the build of the field. (See: rcConfig::walkableClimb) - int borderSize; ///< The AABB border size used during the build of the field. (See: rcConfig::borderSize) - unsigned short maxDistance; ///< The maximum distance value of any span within the field. - unsigned short maxRegions; ///< The maximum region id of any span within the field. - float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)] - float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)] - float cs; ///< The size of each cell. (On the xz-plane.) - float ch; ///< The height of each cell. (The minimum increment along the y-axis.) - rcCompactCell* cells; ///< Array of cells. [Size: #width*#height] - rcCompactSpan* spans; ///< Array of spans. [Size: #spanCount] - unsigned short* dist; ///< Array containing border distance data. [Size: #spanCount] - unsigned char* areas; ///< Array containing area id data. [Size: #spanCount] -}; - -/// Represents a heightfield layer within a layer set. -/// @see rcHeightfieldLayerSet -struct rcHeightfieldLayer -{ - float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)] - float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)] - float cs; ///< The size of each cell. (On the xz-plane.) - float ch; ///< The height of each cell. (The minimum increment along the y-axis.) - int width; ///< The width of the heightfield. (Along the x-axis in cell units.) - int height; ///< The height of the heightfield. (Along the z-axis in cell units.) - int minx; ///< The minimum x-bounds of usable data. - int maxx; ///< The maximum x-bounds of usable data. - int miny; ///< The minimum y-bounds of usable data. (Along the z-axis.) - int maxy; ///< The maximum y-bounds of usable data. (Along the z-axis.) - int hmin; ///< The minimum height bounds of usable data. (Along the y-axis.) - int hmax; ///< The maximum height bounds of usable data. (Along the y-axis.) - unsigned char* heights; ///< The heightfield. [Size: width * height] - unsigned char* areas; ///< Area ids. [Size: Same as #heights] - unsigned char* cons; ///< Packed neighbor connection information. [Size: Same as #heights] -}; - -/// Represents a set of heightfield layers. -/// @ingroup recast -/// @see rcAllocHeightfieldLayerSet, rcFreeHeightfieldLayerSet -struct rcHeightfieldLayerSet -{ - rcHeightfieldLayerSet(); - ~rcHeightfieldLayerSet(); - rcHeightfieldLayer* layers; ///< The layers in the set. [Size: #nlayers] - int nlayers; ///< The number of layers in the set. -}; - -/// Represents a simple, non-overlapping contour in field space. -struct rcContour -{ - int* verts; ///< Simplified contour vertex and connection data. [Size: 4 * #nverts] - int nverts; ///< The number of vertices in the simplified contour. - int* rverts; ///< Raw contour vertex and connection data. [Size: 4 * #nrverts] - int nrverts; ///< The number of vertices in the raw contour. - unsigned short reg; ///< The region id of the contour. - unsigned char area; ///< The area id of the contour. -}; - -/// Represents a group of related contours. -/// @ingroup recast -struct rcContourSet -{ - rcContourSet(); - ~rcContourSet(); - rcContour* conts; ///< An array of the contours in the set. [Size: #nconts] - int nconts; ///< The number of contours in the set. - float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)] - float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)] - float cs; ///< The size of each cell. (On the xz-plane.) - float ch; ///< The height of each cell. (The minimum increment along the y-axis.) - int width; ///< The width of the set. (Along the x-axis in cell units.) - int height; ///< The height of the set. (Along the z-axis in cell units.) - int borderSize; ///< The AABB border size used to generate the source data from which the contours were derived. - float maxError; ///< The max edge error that this contour set was simplified with. -}; - -/// Represents a polygon mesh suitable for use in building a navigation mesh. -/// @ingroup recast -struct rcPolyMesh -{ - rcPolyMesh(); - ~rcPolyMesh(); - unsigned short* verts; ///< The mesh vertices. [Form: (x, y, z) * #nverts] - unsigned short* polys; ///< Polygon and neighbor data. [Length: #maxpolys * 2 * #nvp] - unsigned short* regs; ///< The region id assigned to each polygon. [Length: #maxpolys] - unsigned short* flags; ///< The user defined flags for each polygon. [Length: #maxpolys] - unsigned char* areas; ///< The area id assigned to each polygon. [Length: #maxpolys] - int nverts; ///< The number of vertices. - int npolys; ///< The number of polygons. - int maxpolys; ///< The number of allocated polygons. - int nvp; ///< The maximum number of vertices per polygon. - float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)] - float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)] - float cs; ///< The size of each cell. (On the xz-plane.) - float ch; ///< The height of each cell. (The minimum increment along the y-axis.) - int borderSize; ///< The AABB border size used to generate the source data from which the mesh was derived. - float maxEdgeError; ///< The max error of the polygon edges in the mesh. -}; - -/// Contains triangle meshes that represent detailed height data associated -/// with the polygons in its associated polygon mesh object. -/// @ingroup recast -struct rcPolyMeshDetail -{ - unsigned int* meshes; ///< The sub-mesh data. [Size: 4*#nmeshes] - float* verts; ///< The mesh vertices. [Size: 3*#nverts] - unsigned char* tris; ///< The mesh triangles. [Size: 4*#ntris] - int nmeshes; ///< The number of sub-meshes defined by #meshes. - int nverts; ///< The number of vertices in #verts. - int ntris; ///< The number of triangles in #tris. -}; - -/// @name Allocation Functions -/// Functions used to allocate and de-allocate Recast objects. -/// @see rcAllocSetCustom -/// @{ - -/// Allocates a heightfield object using the Recast allocator. -/// @return A heightfield that is ready for initialization, or null on failure. -/// @ingroup recast -/// @see rcCreateHeightfield, rcFreeHeightField -rcHeightfield* rcAllocHeightfield(); - -/// Frees the specified heightfield object using the Recast allocator. -/// @param[in] hf A heightfield allocated using #rcAllocHeightfield -/// @ingroup recast -/// @see rcAllocHeightfield -void rcFreeHeightField(rcHeightfield* hf); - -/// Allocates a compact heightfield object using the Recast allocator. -/// @return A compact heightfield that is ready for initialization, or null on failure. -/// @ingroup recast -/// @see rcBuildCompactHeightfield, rcFreeCompactHeightfield -rcCompactHeightfield* rcAllocCompactHeightfield(); - -/// Frees the specified compact heightfield object using the Recast allocator. -/// @param[in] chf A compact heightfield allocated using #rcAllocCompactHeightfield -/// @ingroup recast -/// @see rcAllocCompactHeightfield -void rcFreeCompactHeightfield(rcCompactHeightfield* chf); - -/// Allocates a heightfield layer set using the Recast allocator. -/// @return A heightfield layer set that is ready for initialization, or null on failure. -/// @ingroup recast -/// @see rcBuildHeightfieldLayers, rcFreeHeightfieldLayerSet -rcHeightfieldLayerSet* rcAllocHeightfieldLayerSet(); - -/// Frees the specified heightfield layer set using the Recast allocator. -/// @param[in] lset A heightfield layer set allocated using #rcAllocHeightfieldLayerSet -/// @ingroup recast -/// @see rcAllocHeightfieldLayerSet -void rcFreeHeightfieldLayerSet(rcHeightfieldLayerSet* lset); - -/// Allocates a contour set object using the Recast allocator. -/// @return A contour set that is ready for initialization, or null on failure. -/// @ingroup recast -/// @see rcBuildContours, rcFreeContourSet -rcContourSet* rcAllocContourSet(); - -/// Frees the specified contour set using the Recast allocator. -/// @param[in] cset A contour set allocated using #rcAllocContourSet -/// @ingroup recast -/// @see rcAllocContourSet -void rcFreeContourSet(rcContourSet* cset); - -/// Allocates a polygon mesh object using the Recast allocator. -/// @return A polygon mesh that is ready for initialization, or null on failure. -/// @ingroup recast -/// @see rcBuildPolyMesh, rcFreePolyMesh -rcPolyMesh* rcAllocPolyMesh(); - -/// Frees the specified polygon mesh using the Recast allocator. -/// @param[in] pmesh A polygon mesh allocated using #rcAllocPolyMesh -/// @ingroup recast -/// @see rcAllocPolyMesh -void rcFreePolyMesh(rcPolyMesh* pmesh); - -/// Allocates a detail mesh object using the Recast allocator. -/// @return A detail mesh that is ready for initialization, or null on failure. -/// @ingroup recast -/// @see rcBuildPolyMeshDetail, rcFreePolyMeshDetail -rcPolyMeshDetail* rcAllocPolyMeshDetail(); - -/// Frees the specified detail mesh using the Recast allocator. -/// @param[in] dmesh A detail mesh allocated using #rcAllocPolyMeshDetail -/// @ingroup recast -/// @see rcAllocPolyMeshDetail -void rcFreePolyMeshDetail(rcPolyMeshDetail* dmesh); - -/// @} - -/// Heighfield border flag. -/// If a heightfield region ID has this bit set, then the region is a border -/// region and its spans are considered unwalkable. -/// (Used during the region and contour build process.) -/// @see rcCompactSpan::reg -static const unsigned short RC_BORDER_REG = 0x8000; - -/// Polygon touches multiple regions. -/// If a polygon has this region ID it was merged with or created -/// from polygons of different regions during the polymesh -/// build step that removes redundant border vertices. -/// (Used during the polymesh and detail polymesh build processes) -/// @see rcPolyMesh::regs -static const unsigned short RC_MULTIPLE_REGS = 0; - -/// Border vertex flag. -/// If a region ID has this bit set, then the associated element lies on -/// a tile border. If a contour vertex's region ID has this bit set, the -/// vertex will later be removed in order to match the segments and vertices -/// at tile boundaries. -/// (Used during the build process.) -/// @see rcCompactSpan::reg, #rcContour::verts, #rcContour::rverts -static const int RC_BORDER_VERTEX = 0x10000; - -/// Area border flag. -/// If a region ID has this bit set, then the associated element lies on -/// the border of an area. -/// (Used during the region and contour build process.) -/// @see rcCompactSpan::reg, #rcContour::verts, #rcContour::rverts -static const int RC_AREA_BORDER = 0x20000; - -/// Contour build flags. -/// @see rcBuildContours -enum rcBuildContoursFlags -{ - RC_CONTOUR_TESS_WALL_EDGES = 0x01, ///< Tessellate solid (impassable) edges during contour simplification. - RC_CONTOUR_TESS_AREA_EDGES = 0x02, ///< Tessellate edges between areas during contour simplification. -}; - -/// Applied to the region id field of contour vertices in order to extract the region id. -/// The region id field of a vertex may have several flags applied to it. So the -/// fields value can't be used directly. -/// @see rcContour::verts, rcContour::rverts -static const int RC_CONTOUR_REG_MASK = 0xffff; - -/// An value which indicates an invalid index within a mesh. -/// @note This does not necessarily indicate an error. -/// @see rcPolyMesh::polys -static const unsigned short RC_MESH_NULL_IDX = 0xffff; - -/// Represents the null area. -/// When a data element is given this value it is considered to no longer be -/// assigned to a usable area. (E.g. It is unwalkable.) -static const unsigned char RC_NULL_AREA = 0; - -/// The default area id used to indicate a walkable polygon. -/// This is also the maximum allowed area id, and the only non-null area id -/// recognized by some steps in the build process. -static const unsigned char RC_WALKABLE_AREA = 63; - -/// The value returned by #rcGetCon if the specified direction is not connected -/// to another span. (Has no neighbor.) -static const int RC_NOT_CONNECTED = 0x3f; - -/// @name General helper functions -/// @{ - -/// Used to ignore a function parameter. VS complains about unused parameters -/// and this silences the warning. -/// @param [in] _ Unused parameter -template void rcIgnoreUnused(const T&) { } - -/// Swaps the values of the two parameters. -/// @param[in,out] a Value A -/// @param[in,out] b Value B -template inline void rcSwap(T& a, T& b) { T t = a; a = b; b = t; } - -/// Returns the minimum of two values. -/// @param[in] a Value A -/// @param[in] b Value B -/// @return The minimum of the two values. -template inline T rcMin(T a, T b) { return a < b ? a : b; } - -/// Returns the maximum of two values. -/// @param[in] a Value A -/// @param[in] b Value B -/// @return The maximum of the two values. -template inline T rcMax(T a, T b) { return a > b ? a : b; } - -/// Returns the absolute value. -/// @param[in] a The value. -/// @return The absolute value of the specified value. -template inline T rcAbs(T a) { return a < 0 ? -a : a; } - -/// Returns the square of the value. -/// @param[in] a The value. -/// @return The square of the value. -template inline T rcSqr(T a) { return a*a; } - -/// Clamps the value to the specified range. -/// @param[in] v The value to clamp. -/// @param[in] mn The minimum permitted return value. -/// @param[in] mx The maximum permitted return value. -/// @return The value, clamped to the specified range. -template inline T rcClamp(T v, T mn, T mx) { return v < mn ? mn : (v > mx ? mx : v); } - -/// Returns the square root of the value. -/// @param[in] x The value. -/// @return The square root of the vlaue. -float rcSqrt(float x); - -/// @} -/// @name Vector helper functions. -/// @{ - -/// Derives the cross product of two vectors. (@p v1 x @p v2) -/// @param[out] dest The cross product. [(x, y, z)] -/// @param[in] v1 A Vector [(x, y, z)] -/// @param[in] v2 A vector [(x, y, z)] -inline void rcVcross(float* dest, const float* v1, const float* v2) -{ - dest[0] = v1[1]*v2[2] - v1[2]*v2[1]; - dest[1] = v1[2]*v2[0] - v1[0]*v2[2]; - dest[2] = v1[0]*v2[1] - v1[1]*v2[0]; -} - -/// Derives the dot product of two vectors. (@p v1 . @p v2) -/// @param[in] v1 A Vector [(x, y, z)] -/// @param[in] v2 A vector [(x, y, z)] -/// @return The dot product. -inline float rcVdot(const float* v1, const float* v2) -{ - return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]; -} - -/// Performs a scaled vector addition. (@p v1 + (@p v2 * @p s)) -/// @param[out] dest The result vector. [(x, y, z)] -/// @param[in] v1 The base vector. [(x, y, z)] -/// @param[in] v2 The vector to scale and add to @p v1. [(x, y, z)] -/// @param[in] s The amount to scale @p v2 by before adding to @p v1. -inline void rcVmad(float* dest, const float* v1, const float* v2, const float s) -{ - dest[0] = v1[0]+v2[0]*s; - dest[1] = v1[1]+v2[1]*s; - dest[2] = v1[2]+v2[2]*s; -} - -/// Performs a vector addition. (@p v1 + @p v2) -/// @param[out] dest The result vector. [(x, y, z)] -/// @param[in] v1 The base vector. [(x, y, z)] -/// @param[in] v2 The vector to add to @p v1. [(x, y, z)] -inline void rcVadd(float* dest, const float* v1, const float* v2) -{ - dest[0] = v1[0]+v2[0]; - dest[1] = v1[1]+v2[1]; - dest[2] = v1[2]+v2[2]; -} - -/// Performs a vector subtraction. (@p v1 - @p v2) -/// @param[out] dest The result vector. [(x, y, z)] -/// @param[in] v1 The base vector. [(x, y, z)] -/// @param[in] v2 The vector to subtract from @p v1. [(x, y, z)] -inline void rcVsub(float* dest, const float* v1, const float* v2) -{ - dest[0] = v1[0]-v2[0]; - dest[1] = v1[1]-v2[1]; - dest[2] = v1[2]-v2[2]; -} - -/// Selects the minimum value of each element from the specified vectors. -/// @param[in,out] mn A vector. (Will be updated with the result.) [(x, y, z)] -/// @param[in] v A vector. [(x, y, z)] -inline void rcVmin(float* mn, const float* v) -{ - mn[0] = rcMin(mn[0], v[0]); - mn[1] = rcMin(mn[1], v[1]); - mn[2] = rcMin(mn[2], v[2]); -} - -/// Selects the maximum value of each element from the specified vectors. -/// @param[in,out] mx A vector. (Will be updated with the result.) [(x, y, z)] -/// @param[in] v A vector. [(x, y, z)] -inline void rcVmax(float* mx, const float* v) -{ - mx[0] = rcMax(mx[0], v[0]); - mx[1] = rcMax(mx[1], v[1]); - mx[2] = rcMax(mx[2], v[2]); -} - -/// Performs a vector copy. -/// @param[out] dest The result. [(x, y, z)] -/// @param[in] v The vector to copy. [(x, y, z)] -inline void rcVcopy(float* dest, const float* v) -{ - dest[0] = v[0]; - dest[1] = v[1]; - dest[2] = v[2]; -} - -/// Returns the distance between two points. -/// @param[in] v1 A point. [(x, y, z)] -/// @param[in] v2 A point. [(x, y, z)] -/// @return The distance between the two points. -inline float rcVdist(const float* v1, const float* v2) -{ - float dx = v2[0] - v1[0]; - float dy = v2[1] - v1[1]; - float dz = v2[2] - v1[2]; - return rcSqrt(dx*dx + dy*dy + dz*dz); -} - -/// Returns the square of the distance between two points. -/// @param[in] v1 A point. [(x, y, z)] -/// @param[in] v2 A point. [(x, y, z)] -/// @return The square of the distance between the two points. -inline float rcVdistSqr(const float* v1, const float* v2) -{ - float dx = v2[0] - v1[0]; - float dy = v2[1] - v1[1]; - float dz = v2[2] - v1[2]; - return dx*dx + dy*dy + dz*dz; -} - -/// Normalizes the vector. -/// @param[in,out] v The vector to normalize. [(x, y, z)] -inline void rcVnormalize(float* v) -{ - float d = 1.0f / rcSqrt(rcSqr(v[0]) + rcSqr(v[1]) + rcSqr(v[2])); - v[0] *= d; - v[1] *= d; - v[2] *= d; -} - -/// @} -/// @name Heightfield Functions -/// @see rcHeightfield -/// @{ - -/// Calculates the bounding box of an array of vertices. -/// @ingroup recast -/// @param[in] verts An array of vertices. [(x, y, z) * @p nv] -/// @param[in] nv The number of vertices in the @p verts array. -/// @param[out] bmin The minimum bounds of the AABB. [(x, y, z)] [Units: wu] -/// @param[out] bmax The maximum bounds of the AABB. [(x, y, z)] [Units: wu] -void rcCalcBounds(const float* verts, int nv, float* bmin, float* bmax); - -/// Calculates the grid size based on the bounding box and grid cell size. -/// @ingroup recast -/// @param[in] bmin The minimum bounds of the AABB. [(x, y, z)] [Units: wu] -/// @param[in] bmax The maximum bounds of the AABB. [(x, y, z)] [Units: wu] -/// @param[in] cs The xz-plane cell size. [Limit: > 0] [Units: wu] -/// @param[out] w The width along the x-axis. [Limit: >= 0] [Units: vx] -/// @param[out] h The height along the z-axis. [Limit: >= 0] [Units: vx] -void rcCalcGridSize(const float* bmin, const float* bmax, float cs, int* w, int* h); - -/// Initializes a new heightfield. -/// @ingroup recast -/// @param[in,out] ctx The build context to use during the operation. -/// @param[in,out] hf The allocated heightfield to initialize. -/// @param[in] width The width of the field along the x-axis. [Limit: >= 0] [Units: vx] -/// @param[in] height The height of the field along the z-axis. [Limit: >= 0] [Units: vx] -/// @param[in] bmin The minimum bounds of the field's AABB. [(x, y, z)] [Units: wu] -/// @param[in] bmax The maximum bounds of the field's AABB. [(x, y, z)] [Units: wu] -/// @param[in] cs The xz-plane cell size to use for the field. [Limit: > 0] [Units: wu] -/// @param[in] ch The y-axis cell size to use for field. [Limit: > 0] [Units: wu] -/// @returns True if the operation completed successfully. -bool rcCreateHeightfield(rcContext* ctx, rcHeightfield& hf, int width, int height, - const float* bmin, const float* bmax, - float cs, float ch); - -/// Sets the area id of all triangles with a slope below the specified value -/// to #RC_WALKABLE_AREA. -/// @ingroup recast -/// @param[in,out] ctx The build context to use during the operation. -/// @param[in] walkableSlopeAngle The maximum slope that is considered walkable. -/// [Limits: 0 <= value < 90] [Units: Degrees] -/// @param[in] verts The vertices. [(x, y, z) * @p nv] -/// @param[in] nv The number of vertices. -/// @param[in] tris The triangle vertex indices. [(vertA, vertB, vertC) * @p nt] -/// @param[in] nt The number of triangles. -/// @param[out] areas The triangle area ids. [Length: >= @p nt] -void rcMarkWalkableTriangles(rcContext* ctx, const float walkableSlopeAngle, const float* verts, int nv, - const int* tris, int nt, unsigned char* areas); - -/// Sets the area id of all triangles with a slope greater than or equal to the specified value to #RC_NULL_AREA. -/// @ingroup recast -/// @param[in,out] ctx The build context to use during the operation. -/// @param[in] walkableSlopeAngle The maximum slope that is considered walkable. -/// [Limits: 0 <= value < 90] [Units: Degrees] -/// @param[in] verts The vertices. [(x, y, z) * @p nv] -/// @param[in] nv The number of vertices. -/// @param[in] tris The triangle vertex indices. [(vertA, vertB, vertC) * @p nt] -/// @param[in] nt The number of triangles. -/// @param[out] areas The triangle area ids. [Length: >= @p nt] -void rcClearUnwalkableTriangles(rcContext* ctx, const float walkableSlopeAngle, const float* verts, int nv, - const int* tris, int nt, unsigned char* areas); - -/// Adds a span to the specified heightfield. -/// @ingroup recast -/// @param[in,out] ctx The build context to use during the operation. -/// @param[in,out] hf An initialized heightfield. -/// @param[in] x The width index where the span is to be added. -/// [Limits: 0 <= value < rcHeightfield::width] -/// @param[in] y The height index where the span is to be added. -/// [Limits: 0 <= value < rcHeightfield::height] -/// @param[in] smin The minimum height of the span. [Limit: < @p smax] [Units: vx] -/// @param[in] smax The maximum height of the span. [Limit: <= #RC_SPAN_MAX_HEIGHT] [Units: vx] -/// @param[in] area The area id of the span. [Limit: <= #RC_WALKABLE_AREA) -/// @param[in] flagMergeThr The merge theshold. [Limit: >= 0] [Units: vx] -/// @returns True if the operation completed successfully. -bool rcAddSpan(rcContext* ctx, rcHeightfield& hf, const int x, const int y, - const unsigned short smin, const unsigned short smax, - const unsigned char area, const int flagMergeThr); - -/// Rasterizes a triangle into the specified heightfield. -/// @ingroup recast -/// @param[in,out] ctx The build context to use during the operation. -/// @param[in] v0 Triangle vertex 0 [(x, y, z)] -/// @param[in] v1 Triangle vertex 1 [(x, y, z)] -/// @param[in] v2 Triangle vertex 2 [(x, y, z)] -/// @param[in] area The area id of the triangle. [Limit: <= #RC_WALKABLE_AREA] -/// @param[in,out] solid An initialized heightfield. -/// @param[in] flagMergeThr The distance where the walkable flag is favored over the non-walkable flag. -/// [Limit: >= 0] [Units: vx] -/// @returns True if the operation completed successfully. -bool rcRasterizeTriangle(rcContext* ctx, const float* v0, const float* v1, const float* v2, - const unsigned char area, rcHeightfield& solid, - const int flagMergeThr = 1); - -/// Rasterizes an indexed triangle mesh into the specified heightfield. -/// @ingroup recast -/// @param[in,out] ctx The build context to use during the operation. -/// @param[in] verts The vertices. [(x, y, z) * @p nv] -/// @param[in] nv The number of vertices. -/// @param[in] tris The triangle indices. [(vertA, vertB, vertC) * @p nt] -/// @param[in] areas The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt] -/// @param[in] nt The number of triangles. -/// @param[in,out] solid An initialized heightfield. -/// @param[in] flagMergeThr The distance where the walkable flag is favored over the non-walkable flag. -/// [Limit: >= 0] [Units: vx] -/// @returns True if the operation completed successfully. -bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const int nv, - const int* tris, const unsigned char* areas, const int nt, - rcHeightfield& solid, const int flagMergeThr = 1); - -/// Rasterizes an indexed triangle mesh into the specified heightfield. -/// @ingroup recast -/// @param[in,out] ctx The build context to use during the operation. -/// @param[in] verts The vertices. [(x, y, z) * @p nv] -/// @param[in] nv The number of vertices. -/// @param[in] tris The triangle indices. [(vertA, vertB, vertC) * @p nt] -/// @param[in] areas The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt] -/// @param[in] nt The number of triangles. -/// @param[in,out] solid An initialized heightfield. -/// @param[in] flagMergeThr The distance where the walkable flag is favored over the non-walkable flag. -/// [Limit: >= 0] [Units: vx] -/// @returns True if the operation completed successfully. -bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const int nv, - const unsigned short* tris, const unsigned char* areas, const int nt, - rcHeightfield& solid, const int flagMergeThr = 1); - -/// Rasterizes triangles into the specified heightfield. -/// @ingroup recast -/// @param[in,out] ctx The build context to use during the operation. -/// @param[in] verts The triangle vertices. [(ax, ay, az, bx, by, bz, cx, by, cx) * @p nt] -/// @param[in] areas The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt] -/// @param[in] nt The number of triangles. -/// @param[in,out] solid An initialized heightfield. -/// @param[in] flagMergeThr The distance where the walkable flag is favored over the non-walkable flag. -/// [Limit: >= 0] [Units: vx] -/// @returns True if the operation completed successfully. -bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const unsigned char* areas, const int nt, - rcHeightfield& solid, const int flagMergeThr = 1); - -/// Marks non-walkable spans as walkable if their maximum is within @p walkableClimp of a walkable neighbor. -/// @ingroup recast -/// @param[in,out] ctx The build context to use during the operation. -/// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable. -/// [Limit: >=0] [Units: vx] -/// @param[in,out] solid A fully built heightfield. (All spans have been added.) -void rcFilterLowHangingWalkableObstacles(rcContext* ctx, const int walkableClimb, rcHeightfield& solid); - -/// Marks spans that are ledges as not-walkable. -/// @ingroup recast -/// @param[in,out] ctx The build context to use during the operation. -/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area to -/// be considered walkable. [Limit: >= 3] [Units: vx] -/// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable. -/// [Limit: >=0] [Units: vx] -/// @param[in,out] solid A fully built heightfield. (All spans have been added.) -void rcFilterLedgeSpans(rcContext* ctx, const int walkableHeight, - const int walkableClimb, rcHeightfield& solid); - -/// Marks walkable spans as not walkable if the clearence above the span is less than the specified height. -/// @ingroup recast -/// @param[in,out] ctx The build context to use during the operation. -/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area to -/// be considered walkable. [Limit: >= 3] [Units: vx] -/// @param[in,out] solid A fully built heightfield. (All spans have been added.) -void rcFilterWalkableLowHeightSpans(rcContext* ctx, int walkableHeight, rcHeightfield& solid); - -/// Returns the number of spans contained in the specified heightfield. -/// @ingroup recast -/// @param[in,out] ctx The build context to use during the operation. -/// @param[in] hf An initialized heightfield. -/// @returns The number of spans in the heightfield. -int rcGetHeightFieldSpanCount(rcContext* ctx, rcHeightfield& hf); - -/// @} -/// @name Compact Heightfield Functions -/// @see rcCompactHeightfield -/// @{ - -/// Builds a compact heightfield representing open space, from a heightfield representing solid space. -/// @ingroup recast -/// @param[in,out] ctx The build context to use during the operation. -/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area -/// to be considered walkable. [Limit: >= 3] [Units: vx] -/// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable. -/// [Limit: >=0] [Units: vx] -/// @param[in] hf The heightfield to be compacted. -/// @param[out] chf The resulting compact heightfield. (Must be pre-allocated.) -/// @returns True if the operation completed successfully. -bool rcBuildCompactHeightfield(rcContext* ctx, const int walkableHeight, const int walkableClimb, - rcHeightfield& hf, rcCompactHeightfield& chf); - -/// Erodes the walkable area within the heightfield by the specified radius. -/// @ingroup recast -/// @param[in,out] ctx The build context to use during the operation. -/// @param[in] radius The radius of erosion. [Limits: 0 < value < 255] [Units: vx] -/// @param[in,out] chf The populated compact heightfield to erode. -/// @returns True if the operation completed successfully. -bool rcErodeWalkableArea(rcContext* ctx, int radius, rcCompactHeightfield& chf); - -/// Applies a median filter to walkable area types (based on area id), removing noise. -/// @ingroup recast -/// @param[in,out] ctx The build context to use during the operation. -/// @param[in,out] chf A populated compact heightfield. -/// @returns True if the operation completed successfully. -bool rcMedianFilterWalkableArea(rcContext* ctx, rcCompactHeightfield& chf); - -/// Applies an area id to all spans within the specified bounding box. (AABB) -/// @ingroup recast -/// @param[in,out] ctx The build context to use during the operation. -/// @param[in] bmin The minimum of the bounding box. [(x, y, z)] -/// @param[in] bmax The maximum of the bounding box. [(x, y, z)] -/// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA] -/// @param[in,out] chf A populated compact heightfield. -void rcMarkBoxArea(rcContext* ctx, const float* bmin, const float* bmax, unsigned char areaId, - rcCompactHeightfield& chf); - -/// Applies the area id to the all spans within the specified convex polygon. -/// @ingroup recast -/// @param[in,out] ctx The build context to use during the operation. -/// @param[in] verts The vertices of the polygon [Fomr: (x, y, z) * @p nverts] -/// @param[in] nverts The number of vertices in the polygon. -/// @param[in] hmin The height of the base of the polygon. -/// @param[in] hmax The height of the top of the polygon. -/// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA] -/// @param[in,out] chf A populated compact heightfield. -void rcMarkConvexPolyArea(rcContext* ctx, const float* verts, const int nverts, - const float hmin, const float hmax, unsigned char areaId, - rcCompactHeightfield& chf); - -/// Helper function to offset voncex polygons for rcMarkConvexPolyArea. -/// @ingroup recast -/// @param[in] verts The vertices of the polygon [Form: (x, y, z) * @p nverts] -/// @param[in] nverts The number of vertices in the polygon. -/// @param[out] outVerts The offset vertices (should hold up to 2 * @p nverts) [Form: (x, y, z) * return value] -/// @param[in] maxOutVerts The max number of vertices that can be stored to @p outVerts. -/// @returns Number of vertices in the offset polygon or 0 if too few vertices in @p outVerts. -int rcOffsetPoly(const float* verts, const int nverts, const float offset, - float* outVerts, const int maxOutVerts); - -/// Applies the area id to all spans within the specified cylinder. -/// @ingroup recast -/// @param[in,out] ctx The build context to use during the operation. -/// @param[in] pos The center of the base of the cylinder. [Form: (x, y, z)] -/// @param[in] r The radius of the cylinder. -/// @param[in] h The height of the cylinder. -/// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA] -/// @param[in,out] chf A populated compact heightfield. -void rcMarkCylinderArea(rcContext* ctx, const float* pos, - const float r, const float h, unsigned char areaId, - rcCompactHeightfield& chf); - -/// Builds the distance field for the specified compact heightfield. -/// @ingroup recast -/// @param[in,out] ctx The build context to use during the operation. -/// @param[in,out] chf A populated compact heightfield. -/// @returns True if the operation completed successfully. -bool rcBuildDistanceField(rcContext* ctx, rcCompactHeightfield& chf); - -/// Builds region data for the heightfield using watershed partitioning. -/// @ingroup recast -/// @param[in,out] ctx The build context to use during the operation. -/// @param[in,out] chf A populated compact heightfield. -/// @param[in] borderSize The size of the non-navigable border around the heightfield. -/// [Limit: >=0] [Units: vx] -/// @param[in] minRegionArea The minimum number of cells allowed to form isolated island areas. -/// [Limit: >=0] [Units: vx]. -/// @param[in] mergeRegionArea Any regions with a span count smaller than this value will, if possible, -/// be merged with larger regions. [Limit: >=0] [Units: vx] -/// @returns True if the operation completed successfully. -bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf, - const int borderSize, const int minRegionArea, const int mergeRegionArea); - -/// Builds region data for the heightfield by partitioning the heightfield in non-overlapping layers. -/// @ingroup recast -/// @param[in,out] ctx The build context to use during the operation. -/// @param[in,out] chf A populated compact heightfield. -/// @param[in] borderSize The size of the non-navigable border around the heightfield. -/// [Limit: >=0] [Units: vx] -/// @param[in] minRegionArea The minimum number of cells allowed to form isolated island areas. -/// [Limit: >=0] [Units: vx]. -/// @returns True if the operation completed successfully. -bool rcBuildLayerRegions(rcContext* ctx, rcCompactHeightfield& chf, - const int borderSize, const int minRegionArea); - -/// Builds region data for the heightfield using simple monotone partitioning. -/// @ingroup recast -/// @param[in,out] ctx The build context to use during the operation. -/// @param[in,out] chf A populated compact heightfield. -/// @param[in] borderSize The size of the non-navigable border around the heightfield. -/// [Limit: >=0] [Units: vx] -/// @param[in] minRegionArea The minimum number of cells allowed to form isolated island areas. -/// [Limit: >=0] [Units: vx]. -/// @param[in] mergeRegionArea Any regions with a span count smaller than this value will, if possible, -/// be merged with larger regions. [Limit: >=0] [Units: vx] -/// @returns True if the operation completed successfully. -bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf, - const int borderSize, const int minRegionArea, const int mergeRegionArea); - -/// Sets the neighbor connection data for the specified direction. -/// @param[in] s The span to update. -/// @param[in] dir The direction to set. [Limits: 0 <= value < 4] -/// @param[in] i The index of the neighbor span. -inline void rcSetCon(rcCompactSpan& s, int dir, int i) -{ - const unsigned int shift = (unsigned int)dir*6; - unsigned int con = s.con; - s.con = (con & ~(0x3f << shift)) | (((unsigned int)i & 0x3f) << shift); -} - -/// Gets neighbor connection data for the specified direction. -/// @param[in] s The span to check. -/// @param[in] dir The direction to check. [Limits: 0 <= value < 4] -/// @return The neighbor connection data for the specified direction, -/// or #RC_NOT_CONNECTED if there is no connection. -inline int rcGetCon(const rcCompactSpan& s, int dir) -{ - const unsigned int shift = (unsigned int)dir*6; - return (s.con >> shift) & 0x3f; -} - -/// Gets the standard width (x-axis) offset for the specified direction. -/// @param[in] dir The direction. [Limits: 0 <= value < 4] -/// @return The width offset to apply to the current cell position to move -/// in the direction. -inline int rcGetDirOffsetX(int dir) -{ - static const int offset[4] = { -1, 0, 1, 0, }; - return offset[dir&0x03]; -} - -/// Gets the standard height (z-axis) offset for the specified direction. -/// @param[in] dir The direction. [Limits: 0 <= value < 4] -/// @return The height offset to apply to the current cell position to move -/// in the direction. -inline int rcGetDirOffsetY(int dir) -{ - static const int offset[4] = { 0, 1, 0, -1 }; - return offset[dir&0x03]; -} - -/// Gets the direction for the specified offset. One of x and y should be 0. -/// @param[in] x The x offset. [Limits: -1 <= value <= 1] -/// @param[in] y The y offset. [Limits: -1 <= value <= 1] -/// @return The direction that represents the offset. -inline int rcGetDirForOffset(int x, int y) -{ - static const int dirs[5] = { 3, 0, -1, 2, 1 }; - return dirs[((y+1)<<1)+x]; -} - -/// @} -/// @name Layer, Contour, Polymesh, and Detail Mesh Functions -/// @see rcHeightfieldLayer, rcContourSet, rcPolyMesh, rcPolyMeshDetail -/// @{ - -/// Builds a layer set from the specified compact heightfield. -/// @ingroup recast -/// @param[in,out] ctx The build context to use during the operation. -/// @param[in] chf A fully built compact heightfield. -/// @param[in] borderSize The size of the non-navigable border around the heightfield. [Limit: >=0] -/// [Units: vx] -/// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area -/// to be considered walkable. [Limit: >= 3] [Units: vx] -/// @param[out] lset The resulting layer set. (Must be pre-allocated.) -/// @returns True if the operation completed successfully. -bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf, - const int borderSize, const int walkableHeight, - rcHeightfieldLayerSet& lset); - -/// Builds a contour set from the region outlines in the provided compact heightfield. -/// @ingroup recast -/// @param[in,out] ctx The build context to use during the operation. -/// @param[in] chf A fully built compact heightfield. -/// @param[in] maxError The maximum distance a simplfied contour's border edges should deviate -/// the original raw contour. [Limit: >=0] [Units: wu] -/// @param[in] maxEdgeLen The maximum allowed length for contour edges along the border of the mesh. -/// [Limit: >=0] [Units: vx] -/// @param[out] cset The resulting contour set. (Must be pre-allocated.) -/// @param[in] buildFlags The build flags. (See: #rcBuildContoursFlags) -/// @returns True if the operation completed successfully. -bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf, - const float maxError, const int maxEdgeLen, - rcContourSet& cset, const int buildFlags = RC_CONTOUR_TESS_WALL_EDGES); - -/// Builds a polygon mesh from the provided contours. -/// @ingroup recast -/// @param[in,out] ctx The build context to use during the operation. -/// @param[in] cset A fully built contour set. -/// @param[in] nvp The maximum number of vertices allowed for polygons generated during the -/// contour to polygon conversion process. [Limit: >= 3] -/// @param[out] mesh The resulting polygon mesh. (Must be re-allocated.) -/// @returns True if the operation completed successfully. -bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, const int nvp, rcPolyMesh& mesh); - -/// Merges multiple polygon meshes into a single mesh. -/// @ingroup recast -/// @param[in,out] ctx The build context to use during the operation. -/// @param[in] meshes An array of polygon meshes to merge. [Size: @p nmeshes] -/// @param[in] nmeshes The number of polygon meshes in the meshes array. -/// @param[in] mesh The resulting polygon mesh. (Must be pre-allocated.) -/// @returns True if the operation completed successfully. -bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh); - -/// Builds a detail mesh from the provided polygon mesh. -/// @ingroup recast -/// @param[in,out] ctx The build context to use during the operation. -/// @param[in] mesh A fully built polygon mesh. -/// @param[in] chf The compact heightfield used to build the polygon mesh. -/// @param[in] sampleDist Sets the distance to use when samping the heightfield. [Limit: >=0] [Units: wu] -/// @param[in] sampleMaxError The maximum distance the detail mesh surface should deviate from -/// heightfield data. [Limit: >=0] [Units: wu] -/// @param[out] dmesh The resulting detail mesh. (Must be pre-allocated.) -/// @returns True if the operation completed successfully. -bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf, - const float sampleDist, const float sampleMaxError, - rcPolyMeshDetail& dmesh); - -/// Copies the poly mesh data from src to dst. -/// @ingroup recast -/// @param[in,out] ctx The build context to use during the operation. -/// @param[in] src The source mesh to copy from. -/// @param[out] dst The resulting detail mesh. (Must be pre-allocated, must be empty mesh.) -/// @returns True if the operation completed successfully. -bool rcCopyPolyMesh(rcContext* ctx, const rcPolyMesh& src, rcPolyMesh& dst); - -/// Merges multiple detail meshes into a single detail mesh. -/// @ingroup recast -/// @param[in,out] ctx The build context to use during the operation. -/// @param[in] meshes An array of detail meshes to merge. [Size: @p nmeshes] -/// @param[in] nmeshes The number of detail meshes in the meshes array. -/// @param[out] mesh The resulting detail mesh. (Must be pre-allocated.) -/// @returns True if the operation completed successfully. -bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh); - -/// @} - -#endif // RECAST_H - -/////////////////////////////////////////////////////////////////////////// - -// Due to the large amount of detail documentation for this file, -// the content normally located at the end of the header file has been separated -// out to a file in /Docs/Extern. diff --git a/recastnavigation/Recast/Include/RecastAlloc.h b/recastnavigation/Recast/Include/RecastAlloc.h deleted file mode 100644 index e436af9..0000000 --- a/recastnavigation/Recast/Include/RecastAlloc.h +++ /dev/null @@ -1,342 +0,0 @@ -// -// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org -// -// This software is provided 'as-is', without any express or implied -// warranty. In no event will the authors be held liable for any damages -// arising from the use of this software. -// Permission is granted to anyone to use this software for any purpose, -// including commercial applications, and to alter it and redistribute it -// freely, subject to the following restrictions: -// 1. The origin of this software must not be misrepresented; you must not -// claim that you wrote the original software. If you use this software -// in a product, an acknowledgment in the product documentation would be -// appreciated but is not required. -// 2. Altered source versions must be plainly marked as such, and must not be -// misrepresented as being the original software. -// 3. This notice may not be removed or altered from any source distribution. -// - -#ifndef RECASTALLOC_H -#define RECASTALLOC_H - -#include -#include - -#include - -/// Provides hint values to the memory allocator on how long the -/// memory is expected to be used. -enum rcAllocHint -{ - RC_ALLOC_PERM, ///< Memory will persist after a function call. - RC_ALLOC_TEMP ///< Memory used temporarily within a function. -}; - -/// A memory allocation function. -// @param[in] size The size, in bytes of memory, to allocate. -// @param[in] rcAllocHint A hint to the allocator on how long the memory is expected to be in use. -// @return A pointer to the beginning of the allocated memory block, or null if the allocation failed. -/// @see rcAllocSetCustom -typedef void* (rcAllocFunc)(size_t size, rcAllocHint hint); - -/// A memory deallocation function. -/// @param[in] ptr A pointer to a memory block previously allocated using #rcAllocFunc. -/// @see rcAllocSetCustom -typedef void (rcFreeFunc)(void* ptr); - -/// Sets the base custom allocation functions to be used by Recast. -/// @param[in] allocFunc The memory allocation function to be used by #rcAlloc -/// @param[in] freeFunc The memory de-allocation function to be used by #rcFree -void rcAllocSetCustom(rcAllocFunc *allocFunc, rcFreeFunc *freeFunc); - -/// Allocates a memory block. -/// @param[in] size The size, in bytes of memory, to allocate. -/// @param[in] hint A hint to the allocator on how long the memory is expected to be in use. -/// @return A pointer to the beginning of the allocated memory block, or null if the allocation failed. -/// @see rcFree -void* rcAlloc(size_t size, rcAllocHint hint); - -/// Deallocates a memory block. -/// @param[in] ptr A pointer to a memory block previously allocated using #rcAlloc. -/// @see rcAlloc -void rcFree(void* ptr); - -/// An implementation of operator new usable for placement new. The default one is part of STL (which we don't use). -/// rcNewTag is a dummy type used to differentiate our operator from the STL one, in case users import both Recast -/// and STL. -struct rcNewTag {}; -inline void* operator new(size_t, const rcNewTag&, void* p) { return p; } -inline void operator delete(void*, const rcNewTag&, void*) {} - -/// Signed to avoid warnnings when comparing to int loop indexes, and common error with comparing to zero. -/// MSVC2010 has a bug where ssize_t is unsigned (!!!). -typedef intptr_t rcSizeType; -#define RC_SIZE_MAX INTPTR_MAX - -/// Macros to hint to the compiler about the likeliest branch. Please add a benchmark that demonstrates a performance -/// improvement before introducing use cases. -#if defined(__GNUC__) || defined(__clang__) -#define rcLikely(x) __builtin_expect((x), true) -#define rcUnlikely(x) __builtin_expect((x), false) -#else -#define rcLikely(x) (x) -#define rcUnlikely(x) (x) -#endif - -/// Variable-sized storage type. Mimics the interface of std::vector with some notable differences: -/// * Uses rcAlloc()/rcFree() to handle storage. -/// * No support for a custom allocator. -/// * Uses signed size instead of size_t to avoid warnings in for loops: "for (int i = 0; i < foo.size(); i++)" -/// * Omits methods of limited utility: insert/erase, (bad performance), at (we don't use exceptions), operator=. -/// * assign() and the pre-sizing constructor follow C++11 semantics -- they don't construct a temporary if no value is provided. -/// * push_back() and resize() support adding values from the current vector. Range-based constructors and assign(begin, end) do not. -/// * No specialization for bool. -template -class rcVectorBase { - rcSizeType m_size; - rcSizeType m_cap; - T* m_data; - // Constructs a T at the give address with either the copy constructor or the default. - static void construct(T* p, const T& v) { ::new(rcNewTag(), (void*)p) T(v); } - static void construct(T* p) { ::new(rcNewTag(), (void*)p) T; } - static void construct_range(T* begin, T* end); - static void construct_range(T* begin, T* end, const T& value); - static void copy_range(T* dst, const T* begin, const T* end); - void destroy_range(rcSizeType begin, rcSizeType end); - // Creates an array of the given size, copies all of this vector's data into it, and returns it. - T* allocate_and_copy(rcSizeType size); - void resize_impl(rcSizeType size, const T* value); - public: - typedef rcSizeType size_type; - typedef T value_type; - - rcVectorBase() : m_size(0), m_cap(0), m_data(0) {}; - rcVectorBase(const rcVectorBase& other) : m_size(0), m_cap(0), m_data(0) { assign(other.begin(), other.end()); } - explicit rcVectorBase(rcSizeType count) : m_size(0), m_cap(0), m_data(0) { resize(count); } - rcVectorBase(rcSizeType count, const T& value) : m_size(0), m_cap(0), m_data(0) { resize(count, value); } - rcVectorBase(const T* begin, const T* end) : m_size(0), m_cap(0), m_data(0) { assign(begin, end); } - ~rcVectorBase() { destroy_range(0, m_size); rcFree(m_data); } - - // Unlike in std::vector, we return a bool to indicate whether the alloc was successful. - bool reserve(rcSizeType size); - - void assign(rcSizeType count, const T& value) { clear(); resize(count, value); } - void assign(const T* begin, const T* end); - - void resize(rcSizeType size) { resize_impl(size, NULL); } - void resize(rcSizeType size, const T& value) { resize_impl(size, &value); } - // Not implemented as resize(0) because resize requires T to be default-constructible. - void clear() { destroy_range(0, m_size); m_size = 0; } - - void push_back(const T& value); - void pop_back() { rcAssert(m_size > 0); back().~T(); m_size--; } - - rcSizeType size() const { return m_size; } - rcSizeType capacity() const { return m_cap; } - bool empty() const { return size() == 0; } - - const T& operator[](rcSizeType i) const { rcAssert(i >= 0 && i < m_size); return m_data[i]; } - T& operator[](rcSizeType i) { rcAssert(i >= 0 && i < m_size); return m_data[i]; } - - const T& front() const { rcAssert(m_size); return m_data[0]; } - T& front() { rcAssert(m_size); return m_data[0]; } - const T& back() const { rcAssert(m_size); return m_data[m_size - 1]; }; - T& back() { rcAssert(m_size); return m_data[m_size - 1]; }; - const T* data() const { return m_data; } - T* data() { return m_data; } - - T* begin() { return m_data; } - T* end() { return m_data + m_size; } - const T* begin() const { return m_data; } - const T* end() const { return m_data + m_size; } - - void swap(rcVectorBase& other); - - // Explicitly deleted. - rcVectorBase& operator=(const rcVectorBase& other); -}; - -template -bool rcVectorBase::reserve(rcSizeType count) { - if (count <= m_cap) { - return true; - } - T* new_data = allocate_and_copy(count); - if (!new_data) { - return false; - } - destroy_range(0, m_size); - rcFree(m_data); - m_data = new_data; - m_cap = count; - return true; -} -template -T* rcVectorBase::allocate_and_copy(rcSizeType size) { - rcAssert(RC_SIZE_MAX / static_cast(sizeof(T)) >= size); - T* new_data = static_cast(rcAlloc(sizeof(T) * size, H)); - if (new_data) { - copy_range(new_data, m_data, m_data + m_size); - } - return new_data; -} -template -void rcVectorBase::assign(const T* begin, const T* end) { - clear(); - reserve(end - begin); - m_size = end - begin; - copy_range(m_data, begin, end); -} -template -void rcVectorBase::push_back(const T& value) { - // rcLikely increases performance by ~50% on BM_rcVector_PushPreallocated, - // and by ~2-5% on BM_rcVector_Push. - if (rcLikely(m_size < m_cap)) { - construct(m_data + m_size++, value); - return; - } - - rcAssert(RC_SIZE_MAX / 2 >= m_size); - rcSizeType new_cap = m_size ? 2*m_size : 1; - T* data = allocate_and_copy(new_cap); - // construct between allocate and destroy+free in case value is - // in this vector. - construct(data + m_size, value); - destroy_range(0, m_size); - m_size++; - m_cap = new_cap; - rcFree(m_data); - m_data = data; -} -template -void rcVectorBase::resize_impl(rcSizeType size, const T* value) { - if (size < m_size) { - destroy_range(size, m_size); - m_size = size; - } else if (size > m_size) { - T* new_data = allocate_and_copy(size); - // We defer deconstructing/freeing old data until after constructing - // new elements in case "value" is there. - if (value) { - construct_range(new_data + m_size, new_data + size, *value); - } else { - construct_range(new_data + m_size, new_data + size); - } - destroy_range(0, m_size); - rcFree(m_data); - m_data = new_data; - m_cap = size; - m_size = size; - } -} -template -void rcVectorBase::swap(rcVectorBase& other) { - // TODO: Reorganize headers so we can use rcSwap here. - rcSizeType tmp_cap = other.m_cap; - rcSizeType tmp_size = other.m_size; - T* tmp_data = other.m_data; - - other.m_cap = m_cap; - other.m_size = m_size; - other.m_data = m_data; - - m_cap = tmp_cap; - m_size = tmp_size; - m_data = tmp_data; -} -// static -template -void rcVectorBase::construct_range(T* begin, T* end) { - for (T* p = begin; p < end; p++) { - construct(p); - } -} -// static -template -void rcVectorBase::construct_range(T* begin, T* end, const T& value) { - for (T* p = begin; p < end; p++) { - construct(p, value); - } -} -// static -template -void rcVectorBase::copy_range(T* dst, const T* begin, const T* end) { - for (rcSizeType i = 0 ; i < end - begin; i++) { - construct(dst + i, begin[i]); - } -} -template -void rcVectorBase::destroy_range(rcSizeType begin, rcSizeType end) { - for (rcSizeType i = begin; i < end; i++) { - m_data[i].~T(); - } -} - -template -class rcTempVector : public rcVectorBase { - typedef rcVectorBase Base; -public: - rcTempVector() : Base() {} - explicit rcTempVector(rcSizeType size) : Base(size) {} - rcTempVector(rcSizeType size, const T& value) : Base(size, value) {} - rcTempVector(const rcTempVector& other) : Base(other) {} - rcTempVector(const T* begin, const T* end) : Base(begin, end) {} -}; -template -class rcPermVector : public rcVectorBase { - typedef rcVectorBase Base; -public: - rcPermVector() : Base() {} - explicit rcPermVector(rcSizeType size) : Base(size) {} - rcPermVector(rcSizeType size, const T& value) : Base(size, value) {} - rcPermVector(const rcPermVector& other) : Base(other) {} - rcPermVector(const T* begin, const T* end) : Base(begin, end) {} -}; - - -/// Legacy class. Prefer rcVector. -class rcIntArray -{ - rcTempVector m_impl; -public: - rcIntArray() {} - rcIntArray(int n) : m_impl(n, 0) {} - void push(int item) { m_impl.push_back(item); } - void resize(int size) { m_impl.resize(size); } - int pop() - { - int v = m_impl.back(); - m_impl.pop_back(); - return v; - } - int size() const { return static_cast(m_impl.size()); } - int& operator[](int index) { return m_impl[index]; } - int operator[](int index) const { return m_impl[index]; } -}; - -/// A simple helper class used to delete an array when it goes out of scope. -/// @note This class is rarely if ever used by the end user. -template class rcScopedDelete -{ - T* ptr; -public: - - /// Constructs an instance with a null pointer. - inline rcScopedDelete() : ptr(0) {} - - /// Constructs an instance with the specified pointer. - /// @param[in] p An pointer to an allocated array. - inline rcScopedDelete(T* p) : ptr(p) {} - inline ~rcScopedDelete() { rcFree(ptr); } - - /// The root array pointer. - /// @return The root array pointer. - inline operator T*() { return ptr; } - -private: - // Explicitly disabled copy constructor and copy assignment operator. - rcScopedDelete(const rcScopedDelete&); - rcScopedDelete& operator=(const rcScopedDelete&); -}; - -#endif diff --git a/recastnavigation/Recast/Include/RecastAssert.h b/recastnavigation/Recast/Include/RecastAssert.h deleted file mode 100644 index e7cc10e..0000000 --- a/recastnavigation/Recast/Include/RecastAssert.h +++ /dev/null @@ -1,56 +0,0 @@ -// -// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org -// -// This software is provided 'as-is', without any express or implied -// warranty. In no event will the authors be held liable for any damages -// arising from the use of this software. -// Permission is granted to anyone to use this software for any purpose, -// including commercial applications, and to alter it and redistribute it -// freely, subject to the following restrictions: -// 1. The origin of this software must not be misrepresented; you must not -// claim that you wrote the original software. If you use this software -// in a product, an acknowledgment in the product documentation would be -// appreciated but is not required. -// 2. Altered source versions must be plainly marked as such, and must not be -// misrepresented as being the original software. -// 3. This notice may not be removed or altered from any source distribution. -// - -#ifndef RECASTASSERT_H -#define RECASTASSERT_H - -// Note: This header file's only purpose is to include define assert. -// Feel free to change the file and include your own implementation instead. - -#ifdef NDEBUG - -// From http://cnicholson.net/2009/02/stupid-c-tricks-adventures-in-assert/ -# define rcAssert(x) do { (void)sizeof(x); } while((void)(__LINE__==-1),false) - -#else - -/// An assertion failure function. -// @param[in] expression asserted expression. -// @param[in] file Filename of the failed assertion. -// @param[in] line Line number of the failed assertion. -/// @see rcAssertFailSetCustom -typedef void (rcAssertFailFunc)(const char* expression, const char* file, int line); - -/// Sets the base custom assertion failure function to be used by Recast. -/// @param[in] assertFailFunc The function to be used in case of failure of #dtAssert -void rcAssertFailSetCustom(rcAssertFailFunc *assertFailFunc); - -/// Gets the base custom assertion failure function to be used by Recast. -rcAssertFailFunc* rcAssertFailGetCustom(); - -# include -# define rcAssert(expression) \ - { \ - rcAssertFailFunc* failFunc = rcAssertFailGetCustom(); \ - if(failFunc == NULL) { assert(expression); } \ - else if(!(expression)) { (*failFunc)(#expression, __FILE__, __LINE__); } \ - } - -#endif - -#endif // RECASTASSERT_H diff --git a/recastnavigation/Recast/Source/Recast.cpp b/recastnavigation/Recast/Source/Recast.cpp deleted file mode 100644 index 1b71710..0000000 --- a/recastnavigation/Recast/Source/Recast.cpp +++ /dev/null @@ -1,575 +0,0 @@ -// -// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org -// -// This software is provided 'as-is', without any express or implied -// warranty. In no event will the authors be held liable for any damages -// arising from the use of this software. -// Permission is granted to anyone to use this software for any purpose, -// including commercial applications, and to alter it and redistribute it -// freely, subject to the following restrictions: -// 1. The origin of this software must not be misrepresented; you must not -// claim that you wrote the original software. If you use this software -// in a product, an acknowledgment in the product documentation would be -// appreciated but is not required. -// 2. Altered source versions must be plainly marked as such, and must not be -// misrepresented as being the original software. -// 3. This notice may not be removed or altered from any source distribution. -// - -#include -#define _USE_MATH_DEFINES -#include -#include -#include -#include -#include -#include "Recast.h" -#include "RecastAlloc.h" -#include "RecastAssert.h" - -namespace -{ -/// Allocates and constructs an object of the given type, returning a pointer. -/// TODO: Support constructor args. -/// @param[in] hint Hint to the allocator. -template -T* rcNew(rcAllocHint hint) { - T* ptr = (T*)rcAlloc(sizeof(T), hint); - ::new(rcNewTag(), (void*)ptr) T(); - return ptr; -} - -/// Destroys and frees an object allocated with rcNew. -/// @param[in] ptr The object pointer to delete. -template -void rcDelete(T* ptr) { - if (ptr) { - ptr->~T(); - rcFree((void*)ptr); - } -} -} // namespace - - -float rcSqrt(float x) -{ - return sqrtf(x); -} - -/// @class rcContext -/// @par -/// -/// This class does not provide logging or timer functionality on its -/// own. Both must be provided by a concrete implementation -/// by overriding the protected member functions. Also, this class does not -/// provide an interface for extracting log messages. (Only adding them.) -/// So concrete implementations must provide one. -/// -/// If no logging or timers are required, just pass an instance of this -/// class through the Recast build process. -/// - -/// @par -/// -/// Example: -/// @code -/// // Where ctx is an instance of rcContext and filepath is a char array. -/// ctx->log(RC_LOG_ERROR, "buildTiledNavigation: Could not load '%s'", filepath); -/// @endcode -void rcContext::log(const rcLogCategory category, const char* format, ...) -{ - if (!m_logEnabled) - return; - static const int MSG_SIZE = 512; - char msg[MSG_SIZE]; - va_list ap; - va_start(ap, format); - int len = vsnprintf(msg, MSG_SIZE, format, ap); - if (len >= MSG_SIZE) - { - len = MSG_SIZE-1; - msg[MSG_SIZE-1] = '\0'; - } - va_end(ap); - doLog(category, msg, len); -} - -rcHeightfield* rcAllocHeightfield() -{ - return rcNew(RC_ALLOC_PERM); -} -rcHeightfield::rcHeightfield() - : width() - , height() - , bmin() - , bmax() - , cs() - , ch() - , spans() - , pools() - , freelist() -{ -} - -rcHeightfield::~rcHeightfield() -{ - // Delete span array. - rcFree(spans); - // Delete span pools. - while (pools) - { - rcSpanPool* next = pools->next; - rcFree(pools); - pools = next; - } -} - -void rcFreeHeightField(rcHeightfield* hf) -{ - rcDelete(hf); -} - -rcCompactHeightfield* rcAllocCompactHeightfield() -{ - return rcNew(RC_ALLOC_PERM); -} - -void rcFreeCompactHeightfield(rcCompactHeightfield* chf) -{ - rcDelete(chf); -} - -rcCompactHeightfield::rcCompactHeightfield() - : width(), - height(), - spanCount(), - walkableHeight(), - walkableClimb(), - borderSize(), - maxDistance(), - maxRegions(), - bmin(), - bmax(), - cs(), - ch(), - cells(), - spans(), - dist(), - areas() -{ -} -rcCompactHeightfield::~rcCompactHeightfield() -{ - rcFree(cells); - rcFree(spans); - rcFree(dist); - rcFree(areas); -} - -rcHeightfieldLayerSet* rcAllocHeightfieldLayerSet() -{ - return rcNew(RC_ALLOC_PERM); -} -void rcFreeHeightfieldLayerSet(rcHeightfieldLayerSet* lset) -{ - rcDelete(lset); -} - -rcHeightfieldLayerSet::rcHeightfieldLayerSet() - : layers(), nlayers() {} -rcHeightfieldLayerSet::~rcHeightfieldLayerSet() -{ - for (int i = 0; i < nlayers; ++i) - { - rcFree(layers[i].heights); - rcFree(layers[i].areas); - rcFree(layers[i].cons); - } - rcFree(layers); -} - - -rcContourSet* rcAllocContourSet() -{ - return rcNew(RC_ALLOC_PERM); -} -void rcFreeContourSet(rcContourSet* cset) -{ - rcDelete(cset); -} - -rcContourSet::rcContourSet() - : conts(), - nconts(), - bmin(), - bmax(), - cs(), - ch(), - width(), - height(), - borderSize(), - maxError() {} -rcContourSet::~rcContourSet() -{ - for (int i = 0; i < nconts; ++i) - { - rcFree(conts[i].verts); - rcFree(conts[i].rverts); - } - rcFree(conts); -} - - -rcPolyMesh* rcAllocPolyMesh() -{ - return rcNew(RC_ALLOC_PERM); -} -void rcFreePolyMesh(rcPolyMesh* pmesh) -{ - rcDelete(pmesh); -} - -rcPolyMesh::rcPolyMesh() - : verts(), - polys(), - regs(), - flags(), - areas(), - nverts(), - npolys(), - maxpolys(), - nvp(), - bmin(), - bmax(), - cs(), - ch(), - borderSize(), - maxEdgeError() {} - -rcPolyMesh::~rcPolyMesh() -{ - rcFree(verts); - rcFree(polys); - rcFree(regs); - rcFree(flags); - rcFree(areas); -} - -rcPolyMeshDetail* rcAllocPolyMeshDetail() -{ - rcPolyMeshDetail* dmesh = (rcPolyMeshDetail*)rcAlloc(sizeof(rcPolyMeshDetail), RC_ALLOC_PERM); - memset(dmesh, 0, sizeof(rcPolyMeshDetail)); - return dmesh; -} - -void rcFreePolyMeshDetail(rcPolyMeshDetail* dmesh) -{ - if (!dmesh) return; - rcFree(dmesh->meshes); - rcFree(dmesh->verts); - rcFree(dmesh->tris); - rcFree(dmesh); -} - -void rcCalcBounds(const float* verts, int nv, float* bmin, float* bmax) -{ - // Calculate bounding box. - rcVcopy(bmin, verts); - rcVcopy(bmax, verts); - for (int i = 1; i < nv; ++i) - { - const float* v = &verts[i*3]; - rcVmin(bmin, v); - rcVmax(bmax, v); - } -} - -void rcCalcGridSize(const float* bmin, const float* bmax, float cs, int* w, int* h) -{ - *w = (int)((bmax[0] - bmin[0])/cs+0.5f); - *h = (int)((bmax[2] - bmin[2])/cs+0.5f); -} - -/// @par -/// -/// See the #rcConfig documentation for more information on the configuration parameters. -/// -/// @see rcAllocHeightfield, rcHeightfield -bool rcCreateHeightfield(rcContext* ctx, rcHeightfield& hf, int width, int height, - const float* bmin, const float* bmax, - float cs, float ch) -{ - rcIgnoreUnused(ctx); - - hf.width = width; - hf.height = height; - rcVcopy(hf.bmin, bmin); - rcVcopy(hf.bmax, bmax); - hf.cs = cs; - hf.ch = ch; - hf.spans = (rcSpan**)rcAlloc(sizeof(rcSpan*)*hf.width*hf.height, RC_ALLOC_PERM); - if (!hf.spans) - return false; - memset(hf.spans, 0, sizeof(rcSpan*)*hf.width*hf.height); - return true; -} - -static void calcTriNormal(const float* v0, const float* v1, const float* v2, float* norm) -{ - float e0[3], e1[3]; - rcVsub(e0, v1, v0); - rcVsub(e1, v2, v0); - rcVcross(norm, e0, e1); - rcVnormalize(norm); -} - -/// @par -/// -/// Only sets the area id's for the walkable triangles. Does not alter the -/// area id's for unwalkable triangles. -/// -/// See the #rcConfig documentation for more information on the configuration parameters. -/// -/// @see rcHeightfield, rcClearUnwalkableTriangles, rcRasterizeTriangles -void rcMarkWalkableTriangles(rcContext* ctx, const float walkableSlopeAngle, - const float* verts, int nv, - const int* tris, int nt, - unsigned char* areas) -{ - rcIgnoreUnused(ctx); - rcIgnoreUnused(nv); - - const float walkableThr = cosf(walkableSlopeAngle/180.0f*RC_PI); - - float norm[3]; - - for (int i = 0; i < nt; ++i) - { - const int* tri = &tris[i*3]; - calcTriNormal(&verts[tri[0]*3], &verts[tri[1]*3], &verts[tri[2]*3], norm); - // Check if the face is walkable. - if (norm[1] > walkableThr) - areas[i] = RC_WALKABLE_AREA; - } -} - -/// @par -/// -/// Only sets the area id's for the unwalkable triangles. Does not alter the -/// area id's for walkable triangles. -/// -/// See the #rcConfig documentation for more information on the configuration parameters. -/// -/// @see rcHeightfield, rcClearUnwalkableTriangles, rcRasterizeTriangles -void rcClearUnwalkableTriangles(rcContext* ctx, const float walkableSlopeAngle, - const float* verts, int /*nv*/, - const int* tris, int nt, - unsigned char* areas) -{ - rcIgnoreUnused(ctx); - - const float walkableThr = cosf(walkableSlopeAngle/180.0f*RC_PI); - - float norm[3]; - - for (int i = 0; i < nt; ++i) - { - const int* tri = &tris[i*3]; - calcTriNormal(&verts[tri[0]*3], &verts[tri[1]*3], &verts[tri[2]*3], norm); - // Check if the face is walkable. - if (norm[1] <= walkableThr) - areas[i] = RC_NULL_AREA; - } -} - -int rcGetHeightFieldSpanCount(rcContext* ctx, rcHeightfield& hf) -{ - rcIgnoreUnused(ctx); - - const int w = hf.width; - const int h = hf.height; - int spanCount = 0; - for (int y = 0; y < h; ++y) - { - for (int x = 0; x < w; ++x) - { - for (rcSpan* s = hf.spans[x + y*w]; s; s = s->next) - { - if (s->area != RC_NULL_AREA) - spanCount++; - } - } - } - return spanCount; -} - -/// @par -/// -/// This is just the beginning of the process of fully building a compact heightfield. -/// Various filters may be applied, then the distance field and regions built. -/// E.g: #rcBuildDistanceField and #rcBuildRegions -/// -/// See the #rcConfig documentation for more information on the configuration parameters. -/// -/// @see rcAllocCompactHeightfield, rcHeightfield, rcCompactHeightfield, rcConfig -bool rcBuildCompactHeightfield(rcContext* ctx, const int walkableHeight, const int walkableClimb, - rcHeightfield& hf, rcCompactHeightfield& chf) -{ - rcAssert(ctx); - - rcScopedTimer timer(ctx, RC_TIMER_BUILD_COMPACTHEIGHTFIELD); - - const int w = hf.width; - const int h = hf.height; - const int spanCount = rcGetHeightFieldSpanCount(ctx, hf); - - // Fill in header. - chf.width = w; - chf.height = h; - chf.spanCount = spanCount; - chf.walkableHeight = walkableHeight; - chf.walkableClimb = walkableClimb; - chf.maxRegions = 0; - rcVcopy(chf.bmin, hf.bmin); - rcVcopy(chf.bmax, hf.bmax); - chf.bmax[1] += walkableHeight*hf.ch; - chf.cs = hf.cs; - chf.ch = hf.ch; - chf.cells = (rcCompactCell*)rcAlloc(sizeof(rcCompactCell)*w*h, RC_ALLOC_PERM); - if (!chf.cells) - { - ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.cells' (%d)", w*h); - return false; - } - memset(chf.cells, 0, sizeof(rcCompactCell)*w*h); - chf.spans = (rcCompactSpan*)rcAlloc(sizeof(rcCompactSpan)*spanCount, RC_ALLOC_PERM); - if (!chf.spans) - { - ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.spans' (%d)", spanCount); - return false; - } - memset(chf.spans, 0, sizeof(rcCompactSpan)*spanCount); - chf.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*spanCount, RC_ALLOC_PERM); - if (!chf.areas) - { - ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.areas' (%d)", spanCount); - return false; - } - memset(chf.areas, RC_NULL_AREA, sizeof(unsigned char)*spanCount); - - const int MAX_HEIGHT = 0xffff; - - // Fill in cells and spans. - int idx = 0; - for (int y = 0; y < h; ++y) - { - for (int x = 0; x < w; ++x) - { - const rcSpan* s = hf.spans[x + y*w]; - // If there are no spans at this cell, just leave the data to index=0, count=0. - if (!s) continue; - rcCompactCell& c = chf.cells[x+y*w]; - c.index = idx; - c.count = 0; - while (s) - { - if (s->area != RC_NULL_AREA) - { - const int bot = (int)s->smax; - const int top = s->next ? (int)s->next->smin : MAX_HEIGHT; - chf.spans[idx].y = (unsigned short)rcClamp(bot, 0, 0xffff); - chf.spans[idx].h = (unsigned char)rcClamp(top - bot, 0, 0xff); - chf.areas[idx] = s->area; - idx++; - c.count++; - } - s = s->next; - } - } - } - - // Find neighbour connections. - const int MAX_LAYERS = RC_NOT_CONNECTED-1; - int tooHighNeighbour = 0; - for (int y = 0; y < h; ++y) - { - for (int x = 0; x < w; ++x) - { - const rcCompactCell& c = chf.cells[x+y*w]; - for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) - { - rcCompactSpan& s = chf.spans[i]; - - for (int dir = 0; dir < 4; ++dir) - { - rcSetCon(s, dir, RC_NOT_CONNECTED); - const int nx = x + rcGetDirOffsetX(dir); - const int ny = y + rcGetDirOffsetY(dir); - // First check that the neighbour cell is in bounds. - if (nx < 0 || ny < 0 || nx >= w || ny >= h) - continue; - - // Iterate over all neighbour spans and check if any of the is - // accessible from current cell. - const rcCompactCell& nc = chf.cells[nx+ny*w]; - for (int k = (int)nc.index, nk = (int)(nc.index+nc.count); k < nk; ++k) - { - const rcCompactSpan& ns = chf.spans[k]; - const int bot = rcMax(s.y, ns.y); - const int top = rcMin(s.y+s.h, ns.y+ns.h); - - // Check that the gap between the spans is walkable, - // and that the climb height between the gaps is not too high. - if ((top - bot) >= walkableHeight && rcAbs((int)ns.y - (int)s.y) <= walkableClimb) - { - // Mark direction as walkable. - const int lidx = k - (int)nc.index; - if (lidx < 0 || lidx > MAX_LAYERS) - { - tooHighNeighbour = rcMax(tooHighNeighbour, lidx); - continue; - } - rcSetCon(s, dir, lidx); - break; - } - } - - } - } - } - } - - if (tooHighNeighbour > MAX_LAYERS) - { - ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Heightfield has too many layers %d (max: %d)", - tooHighNeighbour, MAX_LAYERS); - } - - return true; -} - -/* -static int getHeightfieldMemoryUsage(const rcHeightfield& hf) -{ - int size = 0; - size += sizeof(hf); - size += hf.width * hf.height * sizeof(rcSpan*); - - rcSpanPool* pool = hf.pools; - while (pool) - { - size += (sizeof(rcSpanPool) - sizeof(rcSpan)) + sizeof(rcSpan)*RC_SPANS_PER_POOL; - pool = pool->next; - } - return size; -} - -static int getCompactHeightFieldMemoryusage(const rcCompactHeightfield& chf) -{ - int size = 0; - size += sizeof(rcCompactHeightfield); - size += sizeof(rcCompactSpan) * chf.spanCount; - size += sizeof(rcCompactCell) * chf.width * chf.height; - return size; -} -*/ diff --git a/recastnavigation/Recast/Source/RecastAlloc.cpp b/recastnavigation/Recast/Source/RecastAlloc.cpp deleted file mode 100644 index bdc3661..0000000 --- a/recastnavigation/Recast/Source/RecastAlloc.cpp +++ /dev/null @@ -1,60 +0,0 @@ -// -// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org -// -// This software is provided 'as-is', without any express or implied -// warranty. In no event will the authors be held liable for any damages -// arising from the use of this software. -// Permission is granted to anyone to use this software for any purpose, -// including commercial applications, and to alter it and redistribute it -// freely, subject to the following restrictions: -// 1. The origin of this software must not be misrepresented; you must not -// claim that you wrote the original software. If you use this software -// in a product, an acknowledgment in the product documentation would be -// appreciated but is not required. -// 2. Altered source versions must be plainly marked as such, and must not be -// misrepresented as being the original software. -// 3. This notice may not be removed or altered from any source distribution. -// - -#include -#include -#include "RecastAlloc.h" -#include "RecastAssert.h" - -static void *rcAllocDefault(size_t size, rcAllocHint) -{ - return malloc(size); -} - -static void rcFreeDefault(void *ptr) -{ - free(ptr); -} - -static rcAllocFunc* sRecastAllocFunc = rcAllocDefault; -static rcFreeFunc* sRecastFreeFunc = rcFreeDefault; - -/// @see rcAlloc, rcFree -void rcAllocSetCustom(rcAllocFunc *allocFunc, rcFreeFunc *freeFunc) -{ - sRecastAllocFunc = allocFunc ? allocFunc : rcAllocDefault; - sRecastFreeFunc = freeFunc ? freeFunc : rcFreeDefault; -} - -/// @see rcAllocSetCustom -void* rcAlloc(size_t size, rcAllocHint hint) -{ - return sRecastAllocFunc(size, hint); -} - -/// @par -/// -/// @warning This function leaves the value of @p ptr unchanged. So it still -/// points to the same (now invalid) location, and not to null. -/// -/// @see rcAllocSetCustom -void rcFree(void* ptr) -{ - if (ptr) - sRecastFreeFunc(ptr); -} diff --git a/recastnavigation/Recast/Source/RecastArea.cpp b/recastnavigation/Recast/Source/RecastArea.cpp deleted file mode 100644 index 97139cf..0000000 --- a/recastnavigation/Recast/Source/RecastArea.cpp +++ /dev/null @@ -1,591 +0,0 @@ -// -// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org -// -// This software is provided 'as-is', without any express or implied -// warranty. In no event will the authors be held liable for any damages -// arising from the use of this software. -// Permission is granted to anyone to use this software for any purpose, -// including commercial applications, and to alter it and redistribute it -// freely, subject to the following restrictions: -// 1. The origin of this software must not be misrepresented; you must not -// claim that you wrote the original software. If you use this software -// in a product, an acknowledgment in the product documentation would be -// appreciated but is not required. -// 2. Altered source versions must be plainly marked as such, and must not be -// misrepresented as being the original software. -// 3. This notice may not be removed or altered from any source distribution. -// - -#include -#define _USE_MATH_DEFINES -#include -#include -#include -#include -#include "Recast.h" -#include "RecastAlloc.h" -#include "RecastAssert.h" - -/// @par -/// -/// Basically, any spans that are closer to a boundary or obstruction than the specified radius -/// are marked as unwalkable. -/// -/// This method is usually called immediately after the heightfield has been built. -/// -/// @see rcCompactHeightfield, rcBuildCompactHeightfield, rcConfig::walkableRadius -bool rcErodeWalkableArea(rcContext* ctx, int radius, rcCompactHeightfield& chf) -{ - rcAssert(ctx); - - const int w = chf.width; - const int h = chf.height; - - rcScopedTimer timer(ctx, RC_TIMER_ERODE_AREA); - - unsigned char* dist = (unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP); - if (!dist) - { - ctx->log(RC_LOG_ERROR, "erodeWalkableArea: Out of memory 'dist' (%d).", chf.spanCount); - return false; - } - - // Init distance. - memset(dist, 0xff, sizeof(unsigned char)*chf.spanCount); - - // Mark boundary cells. - for (int y = 0; y < h; ++y) - { - for (int x = 0; x < w; ++x) - { - const rcCompactCell& c = chf.cells[x+y*w]; - for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) - { - if (chf.areas[i] == RC_NULL_AREA) - { - dist[i] = 0; - } - else - { - const rcCompactSpan& s = chf.spans[i]; - int nc = 0; - for (int dir = 0; dir < 4; ++dir) - { - if (rcGetCon(s, dir) != RC_NOT_CONNECTED) - { - const int nx = x + rcGetDirOffsetX(dir); - const int ny = y + rcGetDirOffsetY(dir); - const int nidx = (int)chf.cells[nx+ny*w].index + rcGetCon(s, dir); - if (chf.areas[nidx] != RC_NULL_AREA) - { - nc++; - } - } - } - // At least one missing neighbour. - if (nc != 4) - dist[i] = 0; - } - } - } - } - - unsigned char nd; - - // Pass 1 - for (int y = 0; y < h; ++y) - { - for (int x = 0; x < w; ++x) - { - const rcCompactCell& c = chf.cells[x+y*w]; - for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) - { - const rcCompactSpan& s = chf.spans[i]; - - if (rcGetCon(s, 0) != RC_NOT_CONNECTED) - { - // (-1,0) - const int ax = x + rcGetDirOffsetX(0); - const int ay = y + rcGetDirOffsetY(0); - const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0); - const rcCompactSpan& as = chf.spans[ai]; - nd = (unsigned char)rcMin((int)dist[ai]+2, 255); - if (nd < dist[i]) - dist[i] = nd; - - // (-1,-1) - if (rcGetCon(as, 3) != RC_NOT_CONNECTED) - { - const int aax = ax + rcGetDirOffsetX(3); - const int aay = ay + rcGetDirOffsetY(3); - const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 3); - nd = (unsigned char)rcMin((int)dist[aai]+3, 255); - if (nd < dist[i]) - dist[i] = nd; - } - } - if (rcGetCon(s, 3) != RC_NOT_CONNECTED) - { - // (0,-1) - const int ax = x + rcGetDirOffsetX(3); - const int ay = y + rcGetDirOffsetY(3); - const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3); - const rcCompactSpan& as = chf.spans[ai]; - nd = (unsigned char)rcMin((int)dist[ai]+2, 255); - if (nd < dist[i]) - dist[i] = nd; - - // (1,-1) - if (rcGetCon(as, 2) != RC_NOT_CONNECTED) - { - const int aax = ax + rcGetDirOffsetX(2); - const int aay = ay + rcGetDirOffsetY(2); - const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 2); - nd = (unsigned char)rcMin((int)dist[aai]+3, 255); - if (nd < dist[i]) - dist[i] = nd; - } - } - } - } - } - - // Pass 2 - for (int y = h-1; y >= 0; --y) - { - for (int x = w-1; x >= 0; --x) - { - const rcCompactCell& c = chf.cells[x+y*w]; - for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) - { - const rcCompactSpan& s = chf.spans[i]; - - if (rcGetCon(s, 2) != RC_NOT_CONNECTED) - { - // (1,0) - const int ax = x + rcGetDirOffsetX(2); - const int ay = y + rcGetDirOffsetY(2); - const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 2); - const rcCompactSpan& as = chf.spans[ai]; - nd = (unsigned char)rcMin((int)dist[ai]+2, 255); - if (nd < dist[i]) - dist[i] = nd; - - // (1,1) - if (rcGetCon(as, 1) != RC_NOT_CONNECTED) - { - const int aax = ax + rcGetDirOffsetX(1); - const int aay = ay + rcGetDirOffsetY(1); - const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 1); - nd = (unsigned char)rcMin((int)dist[aai]+3, 255); - if (nd < dist[i]) - dist[i] = nd; - } - } - if (rcGetCon(s, 1) != RC_NOT_CONNECTED) - { - // (0,1) - const int ax = x + rcGetDirOffsetX(1); - const int ay = y + rcGetDirOffsetY(1); - const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 1); - const rcCompactSpan& as = chf.spans[ai]; - nd = (unsigned char)rcMin((int)dist[ai]+2, 255); - if (nd < dist[i]) - dist[i] = nd; - - // (-1,1) - if (rcGetCon(as, 0) != RC_NOT_CONNECTED) - { - const int aax = ax + rcGetDirOffsetX(0); - const int aay = ay + rcGetDirOffsetY(0); - const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 0); - nd = (unsigned char)rcMin((int)dist[aai]+3, 255); - if (nd < dist[i]) - dist[i] = nd; - } - } - } - } - } - - const unsigned char thr = (unsigned char)(radius*2); - for (int i = 0; i < chf.spanCount; ++i) - if (dist[i] < thr) - chf.areas[i] = RC_NULL_AREA; - - rcFree(dist); - - return true; -} - -static void insertSort(unsigned char* a, const int n) -{ - int i, j; - for (i = 1; i < n; i++) - { - const unsigned char value = a[i]; - for (j = i - 1; j >= 0 && a[j] > value; j--) - a[j+1] = a[j]; - a[j+1] = value; - } -} - -/// @par -/// -/// This filter is usually applied after applying area id's using functions -/// such as #rcMarkBoxArea, #rcMarkConvexPolyArea, and #rcMarkCylinderArea. -/// -/// @see rcCompactHeightfield -bool rcMedianFilterWalkableArea(rcContext* ctx, rcCompactHeightfield& chf) -{ - rcAssert(ctx); - - const int w = chf.width; - const int h = chf.height; - - rcScopedTimer timer(ctx, RC_TIMER_MEDIAN_AREA); - - unsigned char* areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP); - if (!areas) - { - ctx->log(RC_LOG_ERROR, "medianFilterWalkableArea: Out of memory 'areas' (%d).", chf.spanCount); - return false; - } - - // Init distance. - memset(areas, 0xff, sizeof(unsigned char)*chf.spanCount); - - for (int y = 0; y < h; ++y) - { - for (int x = 0; x < w; ++x) - { - const rcCompactCell& c = chf.cells[x+y*w]; - for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) - { - const rcCompactSpan& s = chf.spans[i]; - if (chf.areas[i] == RC_NULL_AREA) - { - areas[i] = chf.areas[i]; - continue; - } - - unsigned char nei[9]; - for (int j = 0; j < 9; ++j) - nei[j] = chf.areas[i]; - - for (int dir = 0; dir < 4; ++dir) - { - if (rcGetCon(s, dir) != RC_NOT_CONNECTED) - { - const int ax = x + rcGetDirOffsetX(dir); - const int ay = y + rcGetDirOffsetY(dir); - const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir); - if (chf.areas[ai] != RC_NULL_AREA) - nei[dir*2+0] = chf.areas[ai]; - - const rcCompactSpan& as = chf.spans[ai]; - const int dir2 = (dir+1) & 0x3; - if (rcGetCon(as, dir2) != RC_NOT_CONNECTED) - { - const int ax2 = ax + rcGetDirOffsetX(dir2); - const int ay2 = ay + rcGetDirOffsetY(dir2); - const int ai2 = (int)chf.cells[ax2+ay2*w].index + rcGetCon(as, dir2); - if (chf.areas[ai2] != RC_NULL_AREA) - nei[dir*2+1] = chf.areas[ai2]; - } - } - } - insertSort(nei, 9); - areas[i] = nei[4]; - } - } - } - - memcpy(chf.areas, areas, sizeof(unsigned char)*chf.spanCount); - - rcFree(areas); - - return true; -} - -/// @par -/// -/// The value of spacial parameters are in world units. -/// -/// @see rcCompactHeightfield, rcMedianFilterWalkableArea -void rcMarkBoxArea(rcContext* ctx, const float* bmin, const float* bmax, unsigned char areaId, - rcCompactHeightfield& chf) -{ - rcAssert(ctx); - - rcScopedTimer timer(ctx, RC_TIMER_MARK_BOX_AREA); - - int minx = (int)((bmin[0]-chf.bmin[0])/chf.cs); - int miny = (int)((bmin[1]-chf.bmin[1])/chf.ch); - int minz = (int)((bmin[2]-chf.bmin[2])/chf.cs); - int maxx = (int)((bmax[0]-chf.bmin[0])/chf.cs); - int maxy = (int)((bmax[1]-chf.bmin[1])/chf.ch); - int maxz = (int)((bmax[2]-chf.bmin[2])/chf.cs); - - if (maxx < 0) return; - if (minx >= chf.width) return; - if (maxz < 0) return; - if (minz >= chf.height) return; - - if (minx < 0) minx = 0; - if (maxx >= chf.width) maxx = chf.width-1; - if (minz < 0) minz = 0; - if (maxz >= chf.height) maxz = chf.height-1; - - for (int z = minz; z <= maxz; ++z) - { - for (int x = minx; x <= maxx; ++x) - { - const rcCompactCell& c = chf.cells[x+z*chf.width]; - for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) - { - rcCompactSpan& s = chf.spans[i]; - if ((int)s.y >= miny && (int)s.y <= maxy) - { - if (chf.areas[i] != RC_NULL_AREA) - chf.areas[i] = areaId; - } - } - } - } -} - - -static int pointInPoly(int nvert, const float* verts, const float* p) -{ - int i, j, c = 0; - for (i = 0, j = nvert-1; i < nvert; j = i++) - { - const float* vi = &verts[i*3]; - const float* vj = &verts[j*3]; - if (((vi[2] > p[2]) != (vj[2] > p[2])) && - (p[0] < (vj[0]-vi[0]) * (p[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) ) - c = !c; - } - return c; -} - -/// @par -/// -/// The value of spacial parameters are in world units. -/// -/// The y-values of the polygon vertices are ignored. So the polygon is effectively -/// projected onto the xz-plane at @p hmin, then extruded to @p hmax. -/// -/// @see rcCompactHeightfield, rcMedianFilterWalkableArea -void rcMarkConvexPolyArea(rcContext* ctx, const float* verts, const int nverts, - const float hmin, const float hmax, unsigned char areaId, - rcCompactHeightfield& chf) -{ - rcAssert(ctx); - - rcScopedTimer timer(ctx, RC_TIMER_MARK_CONVEXPOLY_AREA); - - float bmin[3], bmax[3]; - rcVcopy(bmin, verts); - rcVcopy(bmax, verts); - for (int i = 1; i < nverts; ++i) - { - rcVmin(bmin, &verts[i*3]); - rcVmax(bmax, &verts[i*3]); - } - bmin[1] = hmin; - bmax[1] = hmax; - - int minx = (int)((bmin[0]-chf.bmin[0])/chf.cs); - int miny = (int)((bmin[1]-chf.bmin[1])/chf.ch); - int minz = (int)((bmin[2]-chf.bmin[2])/chf.cs); - int maxx = (int)((bmax[0]-chf.bmin[0])/chf.cs); - int maxy = (int)((bmax[1]-chf.bmin[1])/chf.ch); - int maxz = (int)((bmax[2]-chf.bmin[2])/chf.cs); - - if (maxx < 0) return; - if (minx >= chf.width) return; - if (maxz < 0) return; - if (minz >= chf.height) return; - - if (minx < 0) minx = 0; - if (maxx >= chf.width) maxx = chf.width-1; - if (minz < 0) minz = 0; - if (maxz >= chf.height) maxz = chf.height-1; - - - // TODO: Optimize. - for (int z = minz; z <= maxz; ++z) - { - for (int x = minx; x <= maxx; ++x) - { - const rcCompactCell& c = chf.cells[x+z*chf.width]; - for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) - { - rcCompactSpan& s = chf.spans[i]; - if (chf.areas[i] == RC_NULL_AREA) - continue; - if ((int)s.y >= miny && (int)s.y <= maxy) - { - float p[3]; - p[0] = chf.bmin[0] + (x+0.5f)*chf.cs; - p[1] = 0; - p[2] = chf.bmin[2] + (z+0.5f)*chf.cs; - - if (pointInPoly(nverts, verts, p)) - { - chf.areas[i] = areaId; - } - } - } - } - } -} - -int rcOffsetPoly(const float* verts, const int nverts, const float offset, - float* outVerts, const int maxOutVerts) -{ - const float MITER_LIMIT = 1.20f; - - int n = 0; - - for (int i = 0; i < nverts; i++) - { - const int a = (i+nverts-1) % nverts; - const int b = i; - const int c = (i+1) % nverts; - const float* va = &verts[a*3]; - const float* vb = &verts[b*3]; - const float* vc = &verts[c*3]; - float dx0 = vb[0] - va[0]; - float dy0 = vb[2] - va[2]; - float d0 = dx0*dx0 + dy0*dy0; - if (d0 > 1e-6f) - { - d0 = 1.0f/rcSqrt(d0); - dx0 *= d0; - dy0 *= d0; - } - float dx1 = vc[0] - vb[0]; - float dy1 = vc[2] - vb[2]; - float d1 = dx1*dx1 + dy1*dy1; - if (d1 > 1e-6f) - { - d1 = 1.0f/rcSqrt(d1); - dx1 *= d1; - dy1 *= d1; - } - const float dlx0 = -dy0; - const float dly0 = dx0; - const float dlx1 = -dy1; - const float dly1 = dx1; - float cross = dx1*dy0 - dx0*dy1; - float dmx = (dlx0 + dlx1) * 0.5f; - float dmy = (dly0 + dly1) * 0.5f; - float dmr2 = dmx*dmx + dmy*dmy; - bool bevel = dmr2 * MITER_LIMIT*MITER_LIMIT < 1.0f; - if (dmr2 > 1e-6f) - { - const float scale = 1.0f / dmr2; - dmx *= scale; - dmy *= scale; - } - - if (bevel && cross < 0.0f) - { - if (n+2 >= maxOutVerts) - return 0; - float d = (1.0f - (dx0*dx1 + dy0*dy1))*0.5f; - outVerts[n*3+0] = vb[0] + (-dlx0+dx0*d)*offset; - outVerts[n*3+1] = vb[1]; - outVerts[n*3+2] = vb[2] + (-dly0+dy0*d)*offset; - n++; - outVerts[n*3+0] = vb[0] + (-dlx1-dx1*d)*offset; - outVerts[n*3+1] = vb[1]; - outVerts[n*3+2] = vb[2] + (-dly1-dy1*d)*offset; - n++; - } - else - { - if (n+1 >= maxOutVerts) - return 0; - outVerts[n*3+0] = vb[0] - dmx*offset; - outVerts[n*3+1] = vb[1]; - outVerts[n*3+2] = vb[2] - dmy*offset; - n++; - } - } - - return n; -} - - -/// @par -/// -/// The value of spacial parameters are in world units. -/// -/// @see rcCompactHeightfield, rcMedianFilterWalkableArea -void rcMarkCylinderArea(rcContext* ctx, const float* pos, - const float r, const float h, unsigned char areaId, - rcCompactHeightfield& chf) -{ - rcAssert(ctx); - - rcScopedTimer timer(ctx, RC_TIMER_MARK_CYLINDER_AREA); - - float bmin[3], bmax[3]; - bmin[0] = pos[0] - r; - bmin[1] = pos[1]; - bmin[2] = pos[2] - r; - bmax[0] = pos[0] + r; - bmax[1] = pos[1] + h; - bmax[2] = pos[2] + r; - const float r2 = r*r; - - int minx = (int)((bmin[0]-chf.bmin[0])/chf.cs); - int miny = (int)((bmin[1]-chf.bmin[1])/chf.ch); - int minz = (int)((bmin[2]-chf.bmin[2])/chf.cs); - int maxx = (int)((bmax[0]-chf.bmin[0])/chf.cs); - int maxy = (int)((bmax[1]-chf.bmin[1])/chf.ch); - int maxz = (int)((bmax[2]-chf.bmin[2])/chf.cs); - - if (maxx < 0) return; - if (minx >= chf.width) return; - if (maxz < 0) return; - if (minz >= chf.height) return; - - if (minx < 0) minx = 0; - if (maxx >= chf.width) maxx = chf.width-1; - if (minz < 0) minz = 0; - if (maxz >= chf.height) maxz = chf.height-1; - - - for (int z = minz; z <= maxz; ++z) - { - for (int x = minx; x <= maxx; ++x) - { - const rcCompactCell& c = chf.cells[x+z*chf.width]; - for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) - { - rcCompactSpan& s = chf.spans[i]; - - if (chf.areas[i] == RC_NULL_AREA) - continue; - - if ((int)s.y >= miny && (int)s.y <= maxy) - { - const float sx = chf.bmin[0] + (x+0.5f)*chf.cs; - const float sz = chf.bmin[2] + (z+0.5f)*chf.cs; - const float dx = sx - pos[0]; - const float dz = sz - pos[2]; - - if (dx*dx + dz*dz < r2) - { - chf.areas[i] = areaId; - } - } - } - } - } -} diff --git a/recastnavigation/Recast/Source/RecastAssert.cpp b/recastnavigation/Recast/Source/RecastAssert.cpp deleted file mode 100644 index 6297d42..0000000 --- a/recastnavigation/Recast/Source/RecastAssert.cpp +++ /dev/null @@ -1,35 +0,0 @@ -// -// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org -// -// This software is provided 'as-is', without any express or implied -// warranty. In no event will the authors be held liable for any damages -// arising from the use of this software. -// Permission is granted to anyone to use this software for any purpose, -// including commercial applications, and to alter it and redistribute it -// freely, subject to the following restrictions: -// 1. The origin of this software must not be misrepresented; you must not -// claim that you wrote the original software. If you use this software -// in a product, an acknowledgment in the product documentation would be -// appreciated but is not required. -// 2. Altered source versions must be plainly marked as such, and must not be -// misrepresented as being the original software. -// 3. This notice may not be removed or altered from any source distribution. -// - -#include "RecastAssert.h" - -#ifndef NDEBUG - -static rcAssertFailFunc* sRecastAssertFailFunc = 0; - -void rcAssertFailSetCustom(rcAssertFailFunc *assertFailFunc) -{ - sRecastAssertFailFunc = assertFailFunc; -} - -rcAssertFailFunc* rcAssertFailGetCustom() -{ - return sRecastAssertFailFunc; -} - -#endif diff --git a/recastnavigation/Recast/Source/RecastContour.cpp b/recastnavigation/Recast/Source/RecastContour.cpp deleted file mode 100644 index 277ab01..0000000 --- a/recastnavigation/Recast/Source/RecastContour.cpp +++ /dev/null @@ -1,1105 +0,0 @@ -// -// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org -// -// This software is provided 'as-is', without any express or implied -// warranty. In no event will the authors be held liable for any damages -// arising from the use of this software. -// Permission is granted to anyone to use this software for any purpose, -// including commercial applications, and to alter it and redistribute it -// freely, subject to the following restrictions: -// 1. The origin of this software must not be misrepresented; you must not -// claim that you wrote the original software. If you use this software -// in a product, an acknowledgment in the product documentation would be -// appreciated but is not required. -// 2. Altered source versions must be plainly marked as such, and must not be -// misrepresented as being the original software. -// 3. This notice may not be removed or altered from any source distribution. -// - -#define _USE_MATH_DEFINES -#include -#include -#include -#include -#include "Recast.h" -#include "RecastAlloc.h" -#include "RecastAssert.h" - - -static int getCornerHeight(int x, int y, int i, int dir, - const rcCompactHeightfield& chf, - bool& isBorderVertex) -{ - const rcCompactSpan& s = chf.spans[i]; - int ch = (int)s.y; - int dirp = (dir+1) & 0x3; - - unsigned int regs[4] = {0,0,0,0}; - - // Combine region and area codes in order to prevent - // border vertices which are in between two areas to be removed. - regs[0] = chf.spans[i].reg | (chf.areas[i] << 16); - - if (rcGetCon(s, dir) != RC_NOT_CONNECTED) - { - const int ax = x + rcGetDirOffsetX(dir); - const int ay = y + rcGetDirOffsetY(dir); - const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir); - const rcCompactSpan& as = chf.spans[ai]; - ch = rcMax(ch, (int)as.y); - regs[1] = chf.spans[ai].reg | (chf.areas[ai] << 16); - if (rcGetCon(as, dirp) != RC_NOT_CONNECTED) - { - const int ax2 = ax + rcGetDirOffsetX(dirp); - const int ay2 = ay + rcGetDirOffsetY(dirp); - const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dirp); - const rcCompactSpan& as2 = chf.spans[ai2]; - ch = rcMax(ch, (int)as2.y); - regs[2] = chf.spans[ai2].reg | (chf.areas[ai2] << 16); - } - } - if (rcGetCon(s, dirp) != RC_NOT_CONNECTED) - { - const int ax = x + rcGetDirOffsetX(dirp); - const int ay = y + rcGetDirOffsetY(dirp); - const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dirp); - const rcCompactSpan& as = chf.spans[ai]; - ch = rcMax(ch, (int)as.y); - regs[3] = chf.spans[ai].reg | (chf.areas[ai] << 16); - if (rcGetCon(as, dir) != RC_NOT_CONNECTED) - { - const int ax2 = ax + rcGetDirOffsetX(dir); - const int ay2 = ay + rcGetDirOffsetY(dir); - const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dir); - const rcCompactSpan& as2 = chf.spans[ai2]; - ch = rcMax(ch, (int)as2.y); - regs[2] = chf.spans[ai2].reg | (chf.areas[ai2] << 16); - } - } - - // Check if the vertex is special edge vertex, these vertices will be removed later. - for (int j = 0; j < 4; ++j) - { - const int a = j; - const int b = (j+1) & 0x3; - const int c = (j+2) & 0x3; - const int d = (j+3) & 0x3; - - // The vertex is a border vertex there are two same exterior cells in a row, - // followed by two interior cells and none of the regions are out of bounds. - const bool twoSameExts = (regs[a] & regs[b] & RC_BORDER_REG) != 0 && regs[a] == regs[b]; - const bool twoInts = ((regs[c] | regs[d]) & RC_BORDER_REG) == 0; - const bool intsSameArea = (regs[c]>>16) == (regs[d]>>16); - const bool noZeros = regs[a] != 0 && regs[b] != 0 && regs[c] != 0 && regs[d] != 0; - if (twoSameExts && twoInts && intsSameArea && noZeros) - { - isBorderVertex = true; - break; - } - } - - return ch; -} - -static void walkContour(int x, int y, int i, - rcCompactHeightfield& chf, - unsigned char* flags, rcIntArray& points) -{ - // Choose the first non-connected edge - unsigned char dir = 0; - while ((flags[i] & (1 << dir)) == 0) - dir++; - - unsigned char startDir = dir; - int starti = i; - - const unsigned char area = chf.areas[i]; - - int iter = 0; - while (++iter < 40000) - { - if (flags[i] & (1 << dir)) - { - // Choose the edge corner - bool isBorderVertex = false; - bool isAreaBorder = false; - int px = x; - int py = getCornerHeight(x, y, i, dir, chf, isBorderVertex); - int pz = y; - switch(dir) - { - case 0: pz++; break; - case 1: px++; pz++; break; - case 2: px++; break; - } - int r = 0; - const rcCompactSpan& s = chf.spans[i]; - if (rcGetCon(s, dir) != RC_NOT_CONNECTED) - { - const int ax = x + rcGetDirOffsetX(dir); - const int ay = y + rcGetDirOffsetY(dir); - const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir); - r = (int)chf.spans[ai].reg; - if (area != chf.areas[ai]) - isAreaBorder = true; - } - if (isBorderVertex) - r |= RC_BORDER_VERTEX; - if (isAreaBorder) - r |= RC_AREA_BORDER; - points.push(px); - points.push(py); - points.push(pz); - points.push(r); - - flags[i] &= ~(1 << dir); // Remove visited edges - dir = (dir+1) & 0x3; // Rotate CW - } - else - { - int ni = -1; - const int nx = x + rcGetDirOffsetX(dir); - const int ny = y + rcGetDirOffsetY(dir); - const rcCompactSpan& s = chf.spans[i]; - if (rcGetCon(s, dir) != RC_NOT_CONNECTED) - { - const rcCompactCell& nc = chf.cells[nx+ny*chf.width]; - ni = (int)nc.index + rcGetCon(s, dir); - } - if (ni == -1) - { - // Should not happen. - return; - } - x = nx; - y = ny; - i = ni; - dir = (dir+3) & 0x3; // Rotate CCW - } - - if (starti == i && startDir == dir) - { - break; - } - } -} - -static float distancePtSeg(const int x, const int z, - const int px, const int pz, - const int qx, const int qz) -{ - float pqx = (float)(qx - px); - float pqz = (float)(qz - pz); - float dx = (float)(x - px); - float dz = (float)(z - pz); - float d = pqx*pqx + pqz*pqz; - float t = pqx*dx + pqz*dz; - if (d > 0) - t /= d; - if (t < 0) - t = 0; - else if (t > 1) - t = 1; - - dx = px + t*pqx - x; - dz = pz + t*pqz - z; - - return dx*dx + dz*dz; -} - -static void simplifyContour(rcIntArray& points, rcIntArray& simplified, - const float maxError, const int maxEdgeLen, const int buildFlags) -{ - // Add initial points. - bool hasConnections = false; - for (int i = 0; i < points.size(); i += 4) - { - if ((points[i+3] & RC_CONTOUR_REG_MASK) != 0) - { - hasConnections = true; - break; - } - } - - if (hasConnections) - { - // The contour has some portals to other regions. - // Add a new point to every location where the region changes. - for (int i = 0, ni = points.size()/4; i < ni; ++i) - { - int ii = (i+1) % ni; - const bool differentRegs = (points[i*4+3] & RC_CONTOUR_REG_MASK) != (points[ii*4+3] & RC_CONTOUR_REG_MASK); - const bool areaBorders = (points[i*4+3] & RC_AREA_BORDER) != (points[ii*4+3] & RC_AREA_BORDER); - if (differentRegs || areaBorders) - { - simplified.push(points[i*4+0]); - simplified.push(points[i*4+1]); - simplified.push(points[i*4+2]); - simplified.push(i); - } - } - } - - if (simplified.size() == 0) - { - // If there is no connections at all, - // create some initial points for the simplification process. - // Find lower-left and upper-right vertices of the contour. - int llx = points[0]; - int lly = points[1]; - int llz = points[2]; - int lli = 0; - int urx = points[0]; - int ury = points[1]; - int urz = points[2]; - int uri = 0; - for (int i = 0; i < points.size(); i += 4) - { - int x = points[i+0]; - int y = points[i+1]; - int z = points[i+2]; - if (x < llx || (x == llx && z < llz)) - { - llx = x; - lly = y; - llz = z; - lli = i/4; - } - if (x > urx || (x == urx && z > urz)) - { - urx = x; - ury = y; - urz = z; - uri = i/4; - } - } - simplified.push(llx); - simplified.push(lly); - simplified.push(llz); - simplified.push(lli); - - simplified.push(urx); - simplified.push(ury); - simplified.push(urz); - simplified.push(uri); - } - - // Add points until all raw points are within - // error tolerance to the simplified shape. - const int pn = points.size()/4; - for (int i = 0; i < simplified.size()/4; ) - { - int ii = (i+1) % (simplified.size()/4); - - int ax = simplified[i*4+0]; - int az = simplified[i*4+2]; - int ai = simplified[i*4+3]; - - int bx = simplified[ii*4+0]; - int bz = simplified[ii*4+2]; - int bi = simplified[ii*4+3]; - - // Find maximum deviation from the segment. - float maxd = 0; - int maxi = -1; - int ci, cinc, endi; - - // Traverse the segment in lexilogical order so that the - // max deviation is calculated similarly when traversing - // opposite segments. - if (bx > ax || (bx == ax && bz > az)) - { - cinc = 1; - ci = (ai+cinc) % pn; - endi = bi; - } - else - { - cinc = pn-1; - ci = (bi+cinc) % pn; - endi = ai; - rcSwap(ax, bx); - rcSwap(az, bz); - } - - // Tessellate only outer edges or edges between areas. - if ((points[ci*4+3] & RC_CONTOUR_REG_MASK) == 0 || - (points[ci*4+3] & RC_AREA_BORDER)) - { - while (ci != endi) - { - float d = distancePtSeg(points[ci*4+0], points[ci*4+2], ax, az, bx, bz); - if (d > maxd) - { - maxd = d; - maxi = ci; - } - ci = (ci+cinc) % pn; - } - } - - - // If the max deviation is larger than accepted error, - // add new point, else continue to next segment. - if (maxi != -1 && maxd > (maxError*maxError)) - { - // Add space for the new point. - simplified.resize(simplified.size()+4); - const int n = simplified.size()/4; - for (int j = n-1; j > i; --j) - { - simplified[j*4+0] = simplified[(j-1)*4+0]; - simplified[j*4+1] = simplified[(j-1)*4+1]; - simplified[j*4+2] = simplified[(j-1)*4+2]; - simplified[j*4+3] = simplified[(j-1)*4+3]; - } - // Add the point. - simplified[(i+1)*4+0] = points[maxi*4+0]; - simplified[(i+1)*4+1] = points[maxi*4+1]; - simplified[(i+1)*4+2] = points[maxi*4+2]; - simplified[(i+1)*4+3] = maxi; - } - else - { - ++i; - } - } - - // Split too long edges. - if (maxEdgeLen > 0 && (buildFlags & (RC_CONTOUR_TESS_WALL_EDGES|RC_CONTOUR_TESS_AREA_EDGES)) != 0) - { - for (int i = 0; i < simplified.size()/4; ) - { - const int ii = (i+1) % (simplified.size()/4); - - const int ax = simplified[i*4+0]; - const int az = simplified[i*4+2]; - const int ai = simplified[i*4+3]; - - const int bx = simplified[ii*4+0]; - const int bz = simplified[ii*4+2]; - const int bi = simplified[ii*4+3]; - - // Find maximum deviation from the segment. - int maxi = -1; - int ci = (ai+1) % pn; - - // Tessellate only outer edges or edges between areas. - bool tess = false; - // Wall edges. - if ((buildFlags & RC_CONTOUR_TESS_WALL_EDGES) && (points[ci*4+3] & RC_CONTOUR_REG_MASK) == 0) - tess = true; - // Edges between areas. - if ((buildFlags & RC_CONTOUR_TESS_AREA_EDGES) && (points[ci*4+3] & RC_AREA_BORDER)) - tess = true; - - if (tess) - { - int dx = bx - ax; - int dz = bz - az; - if (dx*dx + dz*dz > maxEdgeLen*maxEdgeLen) - { - // Round based on the segments in lexilogical order so that the - // max tesselation is consistent regardles in which direction - // segments are traversed. - const int n = bi < ai ? (bi+pn - ai) : (bi - ai); - if (n > 1) - { - if (bx > ax || (bx == ax && bz > az)) - maxi = (ai + n/2) % pn; - else - maxi = (ai + (n+1)/2) % pn; - } - } - } - - // If the max deviation is larger than accepted error, - // add new point, else continue to next segment. - if (maxi != -1) - { - // Add space for the new point. - simplified.resize(simplified.size()+4); - const int n = simplified.size()/4; - for (int j = n-1; j > i; --j) - { - simplified[j*4+0] = simplified[(j-1)*4+0]; - simplified[j*4+1] = simplified[(j-1)*4+1]; - simplified[j*4+2] = simplified[(j-1)*4+2]; - simplified[j*4+3] = simplified[(j-1)*4+3]; - } - // Add the point. - simplified[(i+1)*4+0] = points[maxi*4+0]; - simplified[(i+1)*4+1] = points[maxi*4+1]; - simplified[(i+1)*4+2] = points[maxi*4+2]; - simplified[(i+1)*4+3] = maxi; - } - else - { - ++i; - } - } - } - - for (int i = 0; i < simplified.size()/4; ++i) - { - // The edge vertex flag is take from the current raw point, - // and the neighbour region is take from the next raw point. - const int ai = (simplified[i*4+3]+1) % pn; - const int bi = simplified[i*4+3]; - simplified[i*4+3] = (points[ai*4+3] & (RC_CONTOUR_REG_MASK|RC_AREA_BORDER)) | (points[bi*4+3] & RC_BORDER_VERTEX); - } - -} - -static int calcAreaOfPolygon2D(const int* verts, const int nverts) -{ - int area = 0; - for (int i = 0, j = nverts-1; i < nverts; j=i++) - { - const int* vi = &verts[i*4]; - const int* vj = &verts[j*4]; - area += vi[0] * vj[2] - vj[0] * vi[2]; - } - return (area+1) / 2; -} - -// TODO: these are the same as in RecastMesh.cpp, consider using the same. -// Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv). -inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; } -inline int next(int i, int n) { return i+1 < n ? i+1 : 0; } - -inline int area2(const int* a, const int* b, const int* c) -{ - return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]); -} - -// Exclusive or: true iff exactly one argument is true. -// The arguments are negated to ensure that they are 0/1 -// values. Then the bitwise Xor operator may apply. -// (This idea is due to Michael Baldwin.) -inline bool xorb(bool x, bool y) -{ - return !x ^ !y; -} - -// Returns true iff c is strictly to the left of the directed -// line through a to b. -inline bool left(const int* a, const int* b, const int* c) -{ - return area2(a, b, c) < 0; -} - -inline bool leftOn(const int* a, const int* b, const int* c) -{ - return area2(a, b, c) <= 0; -} - -inline bool collinear(const int* a, const int* b, const int* c) -{ - return area2(a, b, c) == 0; -} - -// Returns true iff ab properly intersects cd: they share -// a point interior to both segments. The properness of the -// intersection is ensured by using strict leftness. -static bool intersectProp(const int* a, const int* b, const int* c, const int* d) -{ - // Eliminate improper cases. - if (collinear(a,b,c) || collinear(a,b,d) || - collinear(c,d,a) || collinear(c,d,b)) - return false; - - return xorb(left(a,b,c), left(a,b,d)) && xorb(left(c,d,a), left(c,d,b)); -} - -// Returns T iff (a,b,c) are collinear and point c lies -// on the closed segement ab. -static bool between(const int* a, const int* b, const int* c) -{ - if (!collinear(a, b, c)) - return false; - // If ab not vertical, check betweenness on x; else on y. - if (a[0] != b[0]) - return ((a[0] <= c[0]) && (c[0] <= b[0])) || ((a[0] >= c[0]) && (c[0] >= b[0])); - else - return ((a[2] <= c[2]) && (c[2] <= b[2])) || ((a[2] >= c[2]) && (c[2] >= b[2])); -} - -// Returns true iff segments ab and cd intersect, properly or improperly. -static bool intersect(const int* a, const int* b, const int* c, const int* d) -{ - if (intersectProp(a, b, c, d)) - return true; - else if (between(a, b, c) || between(a, b, d) || - between(c, d, a) || between(c, d, b)) - return true; - else - return false; -} - -static bool vequal(const int* a, const int* b) -{ - return a[0] == b[0] && a[2] == b[2]; -} - -static bool intersectSegCountour(const int* d0, const int* d1, int i, int n, const int* verts) -{ - // For each edge (k,k+1) of P - for (int k = 0; k < n; k++) - { - int k1 = next(k, n); - // Skip edges incident to i. - if (i == k || i == k1) - continue; - const int* p0 = &verts[k * 4]; - const int* p1 = &verts[k1 * 4]; - if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1)) - continue; - - if (intersect(d0, d1, p0, p1)) - return true; - } - return false; -} - -static bool inCone(int i, int n, const int* verts, const int* pj) -{ - const int* pi = &verts[i * 4]; - const int* pi1 = &verts[next(i, n) * 4]; - const int* pin1 = &verts[prev(i, n) * 4]; - - // If P[i] is a convex vertex [ i+1 left or on (i-1,i) ]. - if (leftOn(pin1, pi, pi1)) - return left(pi, pj, pin1) && left(pj, pi, pi1); - // Assume (i-1,i,i+1) not collinear. - // else P[i] is reflex. - return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1)); -} - - -static void removeDegenerateSegments(rcIntArray& simplified) -{ - // Remove adjacent vertices which are equal on xz-plane, - // or else the triangulator will get confused. - int npts = simplified.size()/4; - for (int i = 0; i < npts; ++i) - { - int ni = next(i, npts); - - if (vequal(&simplified[i*4], &simplified[ni*4])) - { - // Degenerate segment, remove. - for (int j = i; j < simplified.size()/4-1; ++j) - { - simplified[j*4+0] = simplified[(j+1)*4+0]; - simplified[j*4+1] = simplified[(j+1)*4+1]; - simplified[j*4+2] = simplified[(j+1)*4+2]; - simplified[j*4+3] = simplified[(j+1)*4+3]; - } - simplified.resize(simplified.size()-4); - npts--; - } - } -} - - -static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib) -{ - const int maxVerts = ca.nverts + cb.nverts + 2; - int* verts = (int*)rcAlloc(sizeof(int)*maxVerts*4, RC_ALLOC_PERM); - if (!verts) - return false; - - int nv = 0; - - // Copy contour A. - for (int i = 0; i <= ca.nverts; ++i) - { - int* dst = &verts[nv*4]; - const int* src = &ca.verts[((ia+i)%ca.nverts)*4]; - dst[0] = src[0]; - dst[1] = src[1]; - dst[2] = src[2]; - dst[3] = src[3]; - nv++; - } - - // Copy contour B - for (int i = 0; i <= cb.nverts; ++i) - { - int* dst = &verts[nv*4]; - const int* src = &cb.verts[((ib+i)%cb.nverts)*4]; - dst[0] = src[0]; - dst[1] = src[1]; - dst[2] = src[2]; - dst[3] = src[3]; - nv++; - } - - rcFree(ca.verts); - ca.verts = verts; - ca.nverts = nv; - - rcFree(cb.verts); - cb.verts = 0; - cb.nverts = 0; - - return true; -} - -struct rcContourHole -{ - rcContour* contour; - int minx, minz, leftmost; -}; - -struct rcContourRegion -{ - rcContour* outline; - rcContourHole* holes; - int nholes; -}; - -struct rcPotentialDiagonal -{ - int vert; - int dist; -}; - -// Finds the lowest leftmost vertex of a contour. -static void findLeftMostVertex(rcContour* contour, int* minx, int* minz, int* leftmost) -{ - *minx = contour->verts[0]; - *minz = contour->verts[2]; - *leftmost = 0; - for (int i = 1; i < contour->nverts; i++) - { - const int x = contour->verts[i*4+0]; - const int z = contour->verts[i*4+2]; - if (x < *minx || (x == *minx && z < *minz)) - { - *minx = x; - *minz = z; - *leftmost = i; - } - } -} - -static int compareHoles(const void* va, const void* vb) -{ - const rcContourHole* a = (const rcContourHole*)va; - const rcContourHole* b = (const rcContourHole*)vb; - if (a->minx == b->minx) - { - if (a->minz < b->minz) - return -1; - if (a->minz > b->minz) - return 1; - } - else - { - if (a->minx < b->minx) - return -1; - if (a->minx > b->minx) - return 1; - } - return 0; -} - - -static int compareDiagDist(const void* va, const void* vb) -{ - const rcPotentialDiagonal* a = (const rcPotentialDiagonal*)va; - const rcPotentialDiagonal* b = (const rcPotentialDiagonal*)vb; - if (a->dist < b->dist) - return -1; - if (a->dist > b->dist) - return 1; - return 0; -} - - -static void mergeRegionHoles(rcContext* ctx, rcContourRegion& region) -{ - // Sort holes from left to right. - for (int i = 0; i < region.nholes; i++) - findLeftMostVertex(region.holes[i].contour, ®ion.holes[i].minx, ®ion.holes[i].minz, ®ion.holes[i].leftmost); - - qsort(region.holes, region.nholes, sizeof(rcContourHole), compareHoles); - - int maxVerts = region.outline->nverts; - for (int i = 0; i < region.nholes; i++) - maxVerts += region.holes[i].contour->nverts; - - rcScopedDelete diags((rcPotentialDiagonal*)rcAlloc(sizeof(rcPotentialDiagonal)*maxVerts, RC_ALLOC_TEMP)); - if (!diags) - { - ctx->log(RC_LOG_WARNING, "mergeRegionHoles: Failed to allocated diags %d.", maxVerts); - return; - } - - rcContour* outline = region.outline; - - // Merge holes into the outline one by one. - for (int i = 0; i < region.nholes; i++) - { - rcContour* hole = region.holes[i].contour; - - int index = -1; - int bestVertex = region.holes[i].leftmost; - for (int iter = 0; iter < hole->nverts; iter++) - { - // Find potential diagonals. - // The 'best' vertex must be in the cone described by 3 cosequtive vertices of the outline. - // ..o j-1 - // | - // | * best - // | - // j o-----o j+1 - // : - int ndiags = 0; - const int* corner = &hole->verts[bestVertex*4]; - for (int j = 0; j < outline->nverts; j++) - { - if (inCone(j, outline->nverts, outline->verts, corner)) - { - int dx = outline->verts[j*4+0] - corner[0]; - int dz = outline->verts[j*4+2] - corner[2]; - diags[ndiags].vert = j; - diags[ndiags].dist = dx*dx + dz*dz; - ndiags++; - } - } - // Sort potential diagonals by distance, we want to make the connection as short as possible. - qsort(diags, ndiags, sizeof(rcPotentialDiagonal), compareDiagDist); - - // Find a diagonal that is not intersecting the outline not the remaining holes. - index = -1; - for (int j = 0; j < ndiags; j++) - { - const int* pt = &outline->verts[diags[j].vert*4]; - bool intersect = intersectSegCountour(pt, corner, diags[i].vert, outline->nverts, outline->verts); - for (int k = i; k < region.nholes && !intersect; k++) - intersect |= intersectSegCountour(pt, corner, -1, region.holes[k].contour->nverts, region.holes[k].contour->verts); - if (!intersect) - { - index = diags[j].vert; - break; - } - } - // If found non-intersecting diagonal, stop looking. - if (index != -1) - break; - // All the potential diagonals for the current vertex were intersecting, try next vertex. - bestVertex = (bestVertex + 1) % hole->nverts; - } - - if (index == -1) - { - ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to find merge points for %p and %p.", region.outline, hole); - continue; - } - if (!mergeContours(*region.outline, *hole, index, bestVertex)) - { - ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to merge contours %p and %p.", region.outline, hole); - continue; - } - } -} - - -/// @par -/// -/// The raw contours will match the region outlines exactly. The @p maxError and @p maxEdgeLen -/// parameters control how closely the simplified contours will match the raw contours. -/// -/// Simplified contours are generated such that the vertices for portals between areas match up. -/// (They are considered mandatory vertices.) -/// -/// Setting @p maxEdgeLength to zero will disabled the edge length feature. -/// -/// See the #rcConfig documentation for more information on the configuration parameters. -/// -/// @see rcAllocContourSet, rcCompactHeightfield, rcContourSet, rcConfig -bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf, - const float maxError, const int maxEdgeLen, - rcContourSet& cset, const int buildFlags) -{ - rcAssert(ctx); - - const int w = chf.width; - const int h = chf.height; - const int borderSize = chf.borderSize; - - rcScopedTimer timer(ctx, RC_TIMER_BUILD_CONTOURS); - - rcVcopy(cset.bmin, chf.bmin); - rcVcopy(cset.bmax, chf.bmax); - if (borderSize > 0) - { - // If the heightfield was build with bordersize, remove the offset. - const float pad = borderSize*chf.cs; - cset.bmin[0] += pad; - cset.bmin[2] += pad; - cset.bmax[0] -= pad; - cset.bmax[2] -= pad; - } - cset.cs = chf.cs; - cset.ch = chf.ch; - cset.width = chf.width - chf.borderSize*2; - cset.height = chf.height - chf.borderSize*2; - cset.borderSize = chf.borderSize; - cset.maxError = maxError; - - int maxContours = rcMax((int)chf.maxRegions, 8); - cset.conts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM); - if (!cset.conts) - return false; - cset.nconts = 0; - - rcScopedDelete flags((unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP)); - if (!flags) - { - ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'flags' (%d).", chf.spanCount); - return false; - } - - ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE); - - // Mark boundaries. - for (int y = 0; y < h; ++y) - { - for (int x = 0; x < w; ++x) - { - const rcCompactCell& c = chf.cells[x+y*w]; - for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) - { - unsigned char res = 0; - const rcCompactSpan& s = chf.spans[i]; - if (!chf.spans[i].reg || (chf.spans[i].reg & RC_BORDER_REG)) - { - flags[i] = 0; - continue; - } - for (int dir = 0; dir < 4; ++dir) - { - unsigned short r = 0; - if (rcGetCon(s, dir) != RC_NOT_CONNECTED) - { - const int ax = x + rcGetDirOffsetX(dir); - const int ay = y + rcGetDirOffsetY(dir); - const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir); - r = chf.spans[ai].reg; - } - if (r == chf.spans[i].reg) - res |= (1 << dir); - } - flags[i] = res ^ 0xf; // Inverse, mark non connected edges. - } - } - } - - ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE); - - rcIntArray verts(256); - rcIntArray simplified(64); - - for (int y = 0; y < h; ++y) - { - for (int x = 0; x < w; ++x) - { - const rcCompactCell& c = chf.cells[x+y*w]; - for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) - { - if (flags[i] == 0 || flags[i] == 0xf) - { - flags[i] = 0; - continue; - } - const unsigned short reg = chf.spans[i].reg; - if (!reg || (reg & RC_BORDER_REG)) - continue; - const unsigned char area = chf.areas[i]; - - verts.resize(0); - simplified.resize(0); - - ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE); - walkContour(x, y, i, chf, flags, verts); - ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE); - - ctx->startTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY); - simplifyContour(verts, simplified, maxError, maxEdgeLen, buildFlags); - removeDegenerateSegments(simplified); - ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY); - - - // Store region->contour remap info. - // Create contour. - if (simplified.size()/4 >= 3) - { - if (cset.nconts >= maxContours) - { - // Allocate more contours. - // This happens when a region has holes. - const int oldMax = maxContours; - maxContours *= 2; - rcContour* newConts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM); - for (int j = 0; j < cset.nconts; ++j) - { - newConts[j] = cset.conts[j]; - // Reset source pointers to prevent data deletion. - cset.conts[j].verts = 0; - cset.conts[j].rverts = 0; - } - rcFree(cset.conts); - cset.conts = newConts; - - ctx->log(RC_LOG_WARNING, "rcBuildContours: Expanding max contours from %d to %d.", oldMax, maxContours); - } - - rcContour* cont = &cset.conts[cset.nconts++]; - - cont->nverts = simplified.size()/4; - cont->verts = (int*)rcAlloc(sizeof(int)*cont->nverts*4, RC_ALLOC_PERM); - if (!cont->verts) - { - ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'verts' (%d).", cont->nverts); - return false; - } - memcpy(cont->verts, &simplified[0], sizeof(int)*cont->nverts*4); - if (borderSize > 0) - { - // If the heightfield was build with bordersize, remove the offset. - for (int j = 0; j < cont->nverts; ++j) - { - int* v = &cont->verts[j*4]; - v[0] -= borderSize; - v[2] -= borderSize; - } - } - - cont->nrverts = verts.size()/4; - cont->rverts = (int*)rcAlloc(sizeof(int)*cont->nrverts*4, RC_ALLOC_PERM); - if (!cont->rverts) - { - ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'rverts' (%d).", cont->nrverts); - return false; - } - memcpy(cont->rverts, &verts[0], sizeof(int)*cont->nrverts*4); - if (borderSize > 0) - { - // If the heightfield was build with bordersize, remove the offset. - for (int j = 0; j < cont->nrverts; ++j) - { - int* v = &cont->rverts[j*4]; - v[0] -= borderSize; - v[2] -= borderSize; - } - } - - cont->reg = reg; - cont->area = area; - } - } - } - } - - // Merge holes if needed. - if (cset.nconts > 0) - { - // Calculate winding of all polygons. - rcScopedDelete winding((char*)rcAlloc(sizeof(char)*cset.nconts, RC_ALLOC_TEMP)); - if (!winding) - { - ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'hole' (%d).", cset.nconts); - return false; - } - int nholes = 0; - for (int i = 0; i < cset.nconts; ++i) - { - rcContour& cont = cset.conts[i]; - // If the contour is wound backwards, it is a hole. - winding[i] = calcAreaOfPolygon2D(cont.verts, cont.nverts) < 0 ? -1 : 1; - if (winding[i] < 0) - nholes++; - } - - if (nholes > 0) - { - // Collect outline contour and holes contours per region. - // We assume that there is one outline and multiple holes. - const int nregions = chf.maxRegions+1; - rcScopedDelete regions((rcContourRegion*)rcAlloc(sizeof(rcContourRegion)*nregions, RC_ALLOC_TEMP)); - if (!regions) - { - ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'regions' (%d).", nregions); - return false; - } - memset(regions, 0, sizeof(rcContourRegion)*nregions); - - rcScopedDelete holes((rcContourHole*)rcAlloc(sizeof(rcContourHole)*cset.nconts, RC_ALLOC_TEMP)); - if (!holes) - { - ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'holes' (%d).", cset.nconts); - return false; - } - memset(holes, 0, sizeof(rcContourHole)*cset.nconts); - - for (int i = 0; i < cset.nconts; ++i) - { - rcContour& cont = cset.conts[i]; - // Positively would contours are outlines, negative holes. - if (winding[i] > 0) - { - if (regions[cont.reg].outline) - ctx->log(RC_LOG_ERROR, "rcBuildContours: Multiple outlines for region %d.", cont.reg); - regions[cont.reg].outline = &cont; - } - else - { - regions[cont.reg].nholes++; - } - } - int index = 0; - for (int i = 0; i < nregions; i++) - { - if (regions[i].nholes > 0) - { - regions[i].holes = &holes[index]; - index += regions[i].nholes; - regions[i].nholes = 0; - } - } - for (int i = 0; i < cset.nconts; ++i) - { - rcContour& cont = cset.conts[i]; - rcContourRegion& reg = regions[cont.reg]; - if (winding[i] < 0) - reg.holes[reg.nholes++].contour = &cont; - } - - // Finally merge each regions holes into the outline. - for (int i = 0; i < nregions; i++) - { - rcContourRegion& reg = regions[i]; - if (!reg.nholes) continue; - - if (reg.outline) - { - mergeRegionHoles(ctx, reg); - } - else - { - // The region does not have an outline. - // This can happen if the contour becaomes selfoverlapping because of - // too aggressive simplification settings. - ctx->log(RC_LOG_ERROR, "rcBuildContours: Bad outline for region %d, contour simplification is likely too aggressive.", i); - } - } - } - - } - - return true; -} diff --git a/recastnavigation/Recast/Source/RecastFilter.cpp b/recastnavigation/Recast/Source/RecastFilter.cpp deleted file mode 100644 index 9d3e63c..0000000 --- a/recastnavigation/Recast/Source/RecastFilter.cpp +++ /dev/null @@ -1,202 +0,0 @@ -// -// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org -// -// This software is provided 'as-is', without any express or implied -// warranty. In no event will the authors be held liable for any damages -// arising from the use of this software. -// Permission is granted to anyone to use this software for any purpose, -// including commercial applications, and to alter it and redistribute it -// freely, subject to the following restrictions: -// 1. The origin of this software must not be misrepresented; you must not -// claim that you wrote the original software. If you use this software -// in a product, an acknowledgment in the product documentation would be -// appreciated but is not required. -// 2. Altered source versions must be plainly marked as such, and must not be -// misrepresented as being the original software. -// 3. This notice may not be removed or altered from any source distribution. -// - -#define _USE_MATH_DEFINES -#include -#include -#include "Recast.h" -#include "RecastAssert.h" - -/// @par -/// -/// Allows the formation of walkable regions that will flow over low lying -/// objects such as curbs, and up structures such as stairways. -/// -/// Two neighboring spans are walkable if: rcAbs(currentSpan.smax - neighborSpan.smax) < waklableClimb -/// -/// @warning Will override the effect of #rcFilterLedgeSpans. So if both filters are used, call -/// #rcFilterLedgeSpans after calling this filter. -/// -/// @see rcHeightfield, rcConfig -void rcFilterLowHangingWalkableObstacles(rcContext* ctx, const int walkableClimb, rcHeightfield& solid) -{ - rcAssert(ctx); - - rcScopedTimer timer(ctx, RC_TIMER_FILTER_LOW_OBSTACLES); - - const int w = solid.width; - const int h = solid.height; - - for (int y = 0; y < h; ++y) - { - for (int x = 0; x < w; ++x) - { - rcSpan* ps = 0; - bool previousWalkable = false; - unsigned char previousArea = RC_NULL_AREA; - - for (rcSpan* s = solid.spans[x + y*w]; s; ps = s, s = s->next) - { - const bool walkable = s->area != RC_NULL_AREA; - // If current span is not walkable, but there is walkable - // span just below it, mark the span above it walkable too. - if (!walkable && previousWalkable) - { - if (rcAbs((int)s->smax - (int)ps->smax) <= walkableClimb) - s->area = previousArea; - } - // Copy walkable flag so that it cannot propagate - // past multiple non-walkable objects. - previousWalkable = walkable; - previousArea = s->area; - } - } - } -} - -/// @par -/// -/// A ledge is a span with one or more neighbors whose maximum is further away than @p walkableClimb -/// from the current span's maximum. -/// This method removes the impact of the overestimation of conservative voxelization -/// so the resulting mesh will not have regions hanging in the air over ledges. -/// -/// A span is a ledge if: rcAbs(currentSpan.smax - neighborSpan.smax) > walkableClimb -/// -/// @see rcHeightfield, rcConfig -void rcFilterLedgeSpans(rcContext* ctx, const int walkableHeight, const int walkableClimb, - rcHeightfield& solid) -{ - rcAssert(ctx); - - rcScopedTimer timer(ctx, RC_TIMER_FILTER_BORDER); - - const int w = solid.width; - const int h = solid.height; - const int MAX_HEIGHT = 0xffff; - - // Mark border spans. - for (int y = 0; y < h; ++y) - { - for (int x = 0; x < w; ++x) - { - for (rcSpan* s = solid.spans[x + y*w]; s; s = s->next) - { - // Skip non walkable spans. - if (s->area == RC_NULL_AREA) - continue; - - const int bot = (int)(s->smax); - const int top = s->next ? (int)(s->next->smin) : MAX_HEIGHT; - - // Find neighbours minimum height. - int minh = MAX_HEIGHT; - - // Min and max height of accessible neighbours. - int asmin = s->smax; - int asmax = s->smax; - - for (int dir = 0; dir < 4; ++dir) - { - int dx = x + rcGetDirOffsetX(dir); - int dy = y + rcGetDirOffsetY(dir); - // Skip neighbours which are out of bounds. - if (dx < 0 || dy < 0 || dx >= w || dy >= h) - { - minh = rcMin(minh, -walkableClimb - bot); - continue; - } - - // From minus infinity to the first span. - rcSpan* ns = solid.spans[dx + dy*w]; - int nbot = -walkableClimb; - int ntop = ns ? (int)ns->smin : MAX_HEIGHT; - // Skip neightbour if the gap between the spans is too small. - if (rcMin(top,ntop) - rcMax(bot,nbot) > walkableHeight) - minh = rcMin(minh, nbot - bot); - - // Rest of the spans. - for (ns = solid.spans[dx + dy*w]; ns; ns = ns->next) - { - nbot = (int)ns->smax; - ntop = ns->next ? (int)ns->next->smin : MAX_HEIGHT; - // Skip neightbour if the gap between the spans is too small. - if (rcMin(top,ntop) - rcMax(bot,nbot) > walkableHeight) - { - minh = rcMin(minh, nbot - bot); - - // Find min/max accessible neighbour height. - if (rcAbs(nbot - bot) <= walkableClimb) - { - if (nbot < asmin) asmin = nbot; - if (nbot > asmax) asmax = nbot; - } - - } - } - } - - // The current span is close to a ledge if the drop to any - // neighbour span is less than the walkableClimb. - if (minh < -walkableClimb) - { - s->area = RC_NULL_AREA; - } - // If the difference between all neighbours is too large, - // we are at steep slope, mark the span as ledge. - else if ((asmax - asmin) > walkableClimb) - { - s->area = RC_NULL_AREA; - } - } - } - } -} - -/// @par -/// -/// For this filter, the clearance above the span is the distance from the span's -/// maximum to the next higher span's minimum. (Same grid column.) -/// -/// @see rcHeightfield, rcConfig -void rcFilterWalkableLowHeightSpans(rcContext* ctx, int walkableHeight, rcHeightfield& solid) -{ - rcAssert(ctx); - - rcScopedTimer timer(ctx, RC_TIMER_FILTER_WALKABLE); - - const int w = solid.width; - const int h = solid.height; - const int MAX_HEIGHT = 0xffff; - - // Remove walkable flag from spans which do not have enough - // space above them for the agent to stand there. - for (int y = 0; y < h; ++y) - { - for (int x = 0; x < w; ++x) - { - for (rcSpan* s = solid.spans[x + y*w]; s; s = s->next) - { - const int bot = (int)(s->smax); - const int top = s->next ? (int)(s->next->smin) : MAX_HEIGHT; - if ((top - bot) <= walkableHeight) - s->area = RC_NULL_AREA; - } - } - } -} diff --git a/recastnavigation/Recast/Source/RecastLayers.cpp b/recastnavigation/Recast/Source/RecastLayers.cpp deleted file mode 100644 index acc97e4..0000000 --- a/recastnavigation/Recast/Source/RecastLayers.cpp +++ /dev/null @@ -1,644 +0,0 @@ -// -// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org -// -// This software is provided 'as-is', without any express or implied -// warranty. In no event will the authors be held liable for any damages -// arising from the use of this software. -// Permission is granted to anyone to use this software for any purpose, -// including commercial applications, and to alter it and redistribute it -// freely, subject to the following restrictions: -// 1. The origin of this software must not be misrepresented; you must not -// claim that you wrote the original software. If you use this software -// in a product, an acknowledgment in the product documentation would be -// appreciated but is not required. -// 2. Altered source versions must be plainly marked as such, and must not be -// misrepresented as being the original software. -// 3. This notice may not be removed or altered from any source distribution. -// - -#include -#define _USE_MATH_DEFINES -#include -#include -#include -#include -#include "Recast.h" -#include "RecastAlloc.h" -#include "RecastAssert.h" - - -// Must be 255 or smaller (not 256) because layer IDs are stored as -// a byte where 255 is a special value. -static const int RC_MAX_LAYERS = 63; -static const int RC_MAX_NEIS = 16; - -struct rcLayerRegion -{ - unsigned char layers[RC_MAX_LAYERS]; - unsigned char neis[RC_MAX_NEIS]; - unsigned short ymin, ymax; - unsigned char layerId; // Layer ID - unsigned char nlayers; // Layer count - unsigned char nneis; // Neighbour count - unsigned char base; // Flag indicating if the region is the base of merged regions. -}; - - -static bool contains(const unsigned char* a, const unsigned char an, const unsigned char v) -{ - const int n = (int)an; - for (int i = 0; i < n; ++i) - { - if (a[i] == v) - return true; - } - return false; -} - -static bool addUnique(unsigned char* a, unsigned char& an, int anMax, unsigned char v) -{ - if (contains(a, an, v)) - return true; - - if ((int)an >= anMax) - return false; - - a[an] = v; - an++; - return true; -} - - -inline bool overlapRange(const unsigned short amin, const unsigned short amax, - const unsigned short bmin, const unsigned short bmax) -{ - return (amin > bmax || amax < bmin) ? false : true; -} - - - -struct rcLayerSweepSpan -{ - unsigned short ns; // number samples - unsigned char id; // region id - unsigned char nei; // neighbour id -}; - -/// @par -/// -/// See the #rcConfig documentation for more information on the configuration parameters. -/// -/// @see rcAllocHeightfieldLayerSet, rcCompactHeightfield, rcHeightfieldLayerSet, rcConfig -bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf, - const int borderSize, const int walkableHeight, - rcHeightfieldLayerSet& lset) -{ - rcAssert(ctx); - - rcScopedTimer timer(ctx, RC_TIMER_BUILD_LAYERS); - - const int w = chf.width; - const int h = chf.height; - - rcScopedDelete srcReg((unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP)); - if (!srcReg) - { - ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'srcReg' (%d).", chf.spanCount); - return false; - } - memset(srcReg,0xff,sizeof(unsigned char)*chf.spanCount); - - const int nsweeps = chf.width; - rcScopedDelete sweeps((rcLayerSweepSpan*)rcAlloc(sizeof(rcLayerSweepSpan)*nsweeps, RC_ALLOC_TEMP)); - if (!sweeps) - { - ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'sweeps' (%d).", nsweeps); - return false; - } - - - // Partition walkable area into monotone regions. - int prevCount[256]; - unsigned char regId = 0; - - for (int y = borderSize; y < h-borderSize; ++y) - { - memset(prevCount,0,sizeof(int)*regId); - unsigned char sweepId = 0; - - for (int x = borderSize; x < w-borderSize; ++x) - { - const rcCompactCell& c = chf.cells[x+y*w]; - - for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) - { - const rcCompactSpan& s = chf.spans[i]; - if (chf.areas[i] == RC_NULL_AREA) continue; - - unsigned char sid = 0xff; - - // -x - if (rcGetCon(s, 0) != RC_NOT_CONNECTED) - { - const int ax = x + rcGetDirOffsetX(0); - const int ay = y + rcGetDirOffsetY(0); - const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0); - if (chf.areas[ai] != RC_NULL_AREA && srcReg[ai] != 0xff) - sid = srcReg[ai]; - } - - if (sid == 0xff) - { - sid = sweepId++; - sweeps[sid].nei = 0xff; - sweeps[sid].ns = 0; - } - - // -y - if (rcGetCon(s,3) != RC_NOT_CONNECTED) - { - const int ax = x + rcGetDirOffsetX(3); - const int ay = y + rcGetDirOffsetY(3); - const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3); - const unsigned char nr = srcReg[ai]; - if (nr != 0xff) - { - // Set neighbour when first valid neighbour is encoutered. - if (sweeps[sid].ns == 0) - sweeps[sid].nei = nr; - - if (sweeps[sid].nei == nr) - { - // Update existing neighbour - sweeps[sid].ns++; - prevCount[nr]++; - } - else - { - // This is hit if there is nore than one neighbour. - // Invalidate the neighbour. - sweeps[sid].nei = 0xff; - } - } - } - - srcReg[i] = sid; - } - } - - // Create unique ID. - for (int i = 0; i < sweepId; ++i) - { - // If the neighbour is set and there is only one continuous connection to it, - // the sweep will be merged with the previous one, else new region is created. - if (sweeps[i].nei != 0xff && prevCount[sweeps[i].nei] == (int)sweeps[i].ns) - { - sweeps[i].id = sweeps[i].nei; - } - else - { - if (regId == 255) - { - ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Region ID overflow."); - return false; - } - sweeps[i].id = regId++; - } - } - - // Remap local sweep ids to region ids. - for (int x = borderSize; x < w-borderSize; ++x) - { - const rcCompactCell& c = chf.cells[x+y*w]; - for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) - { - if (srcReg[i] != 0xff) - srcReg[i] = sweeps[srcReg[i]].id; - } - } - } - - // Allocate and init layer regions. - const int nregs = (int)regId; - rcScopedDelete regs((rcLayerRegion*)rcAlloc(sizeof(rcLayerRegion)*nregs, RC_ALLOC_TEMP)); - if (!regs) - { - ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'regs' (%d).", nregs); - return false; - } - memset(regs, 0, sizeof(rcLayerRegion)*nregs); - for (int i = 0; i < nregs; ++i) - { - regs[i].layerId = 0xff; - regs[i].ymin = 0xffff; - regs[i].ymax = 0; - } - - // Find region neighbours and overlapping regions. - for (int y = 0; y < h; ++y) - { - for (int x = 0; x < w; ++x) - { - const rcCompactCell& c = chf.cells[x+y*w]; - - unsigned char lregs[RC_MAX_LAYERS]; - int nlregs = 0; - - for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) - { - const rcCompactSpan& s = chf.spans[i]; - const unsigned char ri = srcReg[i]; - if (ri == 0xff) continue; - - regs[ri].ymin = rcMin(regs[ri].ymin, s.y); - regs[ri].ymax = rcMax(regs[ri].ymax, s.y); - - // Collect all region layers. - if (nlregs < RC_MAX_LAYERS) - lregs[nlregs++] = ri; - - // Update neighbours - for (int dir = 0; dir < 4; ++dir) - { - if (rcGetCon(s, dir) != RC_NOT_CONNECTED) - { - const int ax = x + rcGetDirOffsetX(dir); - const int ay = y + rcGetDirOffsetY(dir); - const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir); - const unsigned char rai = srcReg[ai]; - if (rai != 0xff && rai != ri) - { - // Don't check return value -- if we cannot add the neighbor - // it will just cause a few more regions to be created, which - // is fine. - addUnique(regs[ri].neis, regs[ri].nneis, RC_MAX_NEIS, rai); - } - } - } - - } - - // Update overlapping regions. - for (int i = 0; i < nlregs-1; ++i) - { - for (int j = i+1; j < nlregs; ++j) - { - if (lregs[i] != lregs[j]) - { - rcLayerRegion& ri = regs[lregs[i]]; - rcLayerRegion& rj = regs[lregs[j]]; - - if (!addUnique(ri.layers, ri.nlayers, RC_MAX_LAYERS, lregs[j]) || - !addUnique(rj.layers, rj.nlayers, RC_MAX_LAYERS, lregs[i])) - { - ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: layer overflow (too many overlapping walkable platforms). Try increasing RC_MAX_LAYERS."); - return false; - } - } - } - } - - } - } - - // Create 2D layers from regions. - unsigned char layerId = 0; - - static const int MAX_STACK = 64; - unsigned char stack[MAX_STACK]; - int nstack = 0; - - for (int i = 0; i < nregs; ++i) - { - rcLayerRegion& root = regs[i]; - // Skip already visited. - if (root.layerId != 0xff) - continue; - - // Start search. - root.layerId = layerId; - root.base = 1; - - nstack = 0; - stack[nstack++] = (unsigned char)i; - - while (nstack) - { - // Pop front - rcLayerRegion& reg = regs[stack[0]]; - nstack--; - for (int j = 0; j < nstack; ++j) - stack[j] = stack[j+1]; - - const int nneis = (int)reg.nneis; - for (int j = 0; j < nneis; ++j) - { - const unsigned char nei = reg.neis[j]; - rcLayerRegion& regn = regs[nei]; - // Skip already visited. - if (regn.layerId != 0xff) - continue; - // Skip if the neighbour is overlapping root region. - if (contains(root.layers, root.nlayers, nei)) - continue; - // Skip if the height range would become too large. - const int ymin = rcMin(root.ymin, regn.ymin); - const int ymax = rcMax(root.ymax, regn.ymax); - if ((ymax - ymin) >= 255) - continue; - - if (nstack < MAX_STACK) - { - // Deepen - stack[nstack++] = (unsigned char)nei; - - // Mark layer id - regn.layerId = layerId; - // Merge current layers to root. - for (int k = 0; k < regn.nlayers; ++k) - { - if (!addUnique(root.layers, root.nlayers, RC_MAX_LAYERS, regn.layers[k])) - { - ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: layer overflow (too many overlapping walkable platforms). Try increasing RC_MAX_LAYERS."); - return false; - } - } - root.ymin = rcMin(root.ymin, regn.ymin); - root.ymax = rcMax(root.ymax, regn.ymax); - } - } - } - - layerId++; - } - - // Merge non-overlapping regions that are close in height. - const unsigned short mergeHeight = (unsigned short)walkableHeight * 4; - - for (int i = 0; i < nregs; ++i) - { - rcLayerRegion& ri = regs[i]; - if (!ri.base) continue; - - unsigned char newId = ri.layerId; - - for (;;) - { - unsigned char oldId = 0xff; - - for (int j = 0; j < nregs; ++j) - { - if (i == j) continue; - rcLayerRegion& rj = regs[j]; - if (!rj.base) continue; - - // Skip if the regions are not close to each other. - if (!overlapRange(ri.ymin,ri.ymax+mergeHeight, rj.ymin,rj.ymax+mergeHeight)) - continue; - // Skip if the height range would become too large. - const int ymin = rcMin(ri.ymin, rj.ymin); - const int ymax = rcMax(ri.ymax, rj.ymax); - if ((ymax - ymin) >= 255) - continue; - - // Make sure that there is no overlap when merging 'ri' and 'rj'. - bool overlap = false; - // Iterate over all regions which have the same layerId as 'rj' - for (int k = 0; k < nregs; ++k) - { - if (regs[k].layerId != rj.layerId) - continue; - // Check if region 'k' is overlapping region 'ri' - // Index to 'regs' is the same as region id. - if (contains(ri.layers,ri.nlayers, (unsigned char)k)) - { - overlap = true; - break; - } - } - // Cannot merge of regions overlap. - if (overlap) - continue; - - // Can merge i and j. - oldId = rj.layerId; - break; - } - - // Could not find anything to merge with, stop. - if (oldId == 0xff) - break; - - // Merge - for (int j = 0; j < nregs; ++j) - { - rcLayerRegion& rj = regs[j]; - if (rj.layerId == oldId) - { - rj.base = 0; - // Remap layerIds. - rj.layerId = newId; - // Add overlaid layers from 'rj' to 'ri'. - for (int k = 0; k < rj.nlayers; ++k) - { - if (!addUnique(ri.layers, ri.nlayers, RC_MAX_LAYERS, rj.layers[k])) - { - ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: layer overflow (too many overlapping walkable platforms). Try increasing RC_MAX_LAYERS."); - return false; - } - } - - // Update height bounds. - ri.ymin = rcMin(ri.ymin, rj.ymin); - ri.ymax = rcMax(ri.ymax, rj.ymax); - } - } - } - } - - // Compact layerIds - unsigned char remap[256]; - memset(remap, 0, 256); - - // Find number of unique layers. - layerId = 0; - for (int i = 0; i < nregs; ++i) - remap[regs[i].layerId] = 1; - for (int i = 0; i < 256; ++i) - { - if (remap[i]) - remap[i] = layerId++; - else - remap[i] = 0xff; - } - // Remap ids. - for (int i = 0; i < nregs; ++i) - regs[i].layerId = remap[regs[i].layerId]; - - // No layers, return empty. - if (layerId == 0) - return true; - - // Create layers. - rcAssert(lset.layers == 0); - - const int lw = w - borderSize*2; - const int lh = h - borderSize*2; - - // Build contracted bbox for layers. - float bmin[3], bmax[3]; - rcVcopy(bmin, chf.bmin); - rcVcopy(bmax, chf.bmax); - bmin[0] += borderSize*chf.cs; - bmin[2] += borderSize*chf.cs; - bmax[0] -= borderSize*chf.cs; - bmax[2] -= borderSize*chf.cs; - - lset.nlayers = (int)layerId; - - lset.layers = (rcHeightfieldLayer*)rcAlloc(sizeof(rcHeightfieldLayer)*lset.nlayers, RC_ALLOC_PERM); - if (!lset.layers) - { - ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'layers' (%d).", lset.nlayers); - return false; - } - memset(lset.layers, 0, sizeof(rcHeightfieldLayer)*lset.nlayers); - - - // Store layers. - for (int i = 0; i < lset.nlayers; ++i) - { - unsigned char curId = (unsigned char)i; - - rcHeightfieldLayer* layer = &lset.layers[i]; - - const int gridSize = sizeof(unsigned char)*lw*lh; - - layer->heights = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM); - if (!layer->heights) - { - ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'heights' (%d).", gridSize); - return false; - } - memset(layer->heights, 0xff, gridSize); - - layer->areas = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM); - if (!layer->areas) - { - ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'areas' (%d).", gridSize); - return false; - } - memset(layer->areas, 0, gridSize); - - layer->cons = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM); - if (!layer->cons) - { - ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'cons' (%d).", gridSize); - return false; - } - memset(layer->cons, 0, gridSize); - - // Find layer height bounds. - int hmin = 0, hmax = 0; - for (int j = 0; j < nregs; ++j) - { - if (regs[j].base && regs[j].layerId == curId) - { - hmin = (int)regs[j].ymin; - hmax = (int)regs[j].ymax; - } - } - - layer->width = lw; - layer->height = lh; - layer->cs = chf.cs; - layer->ch = chf.ch; - - // Adjust the bbox to fit the heightfield. - rcVcopy(layer->bmin, bmin); - rcVcopy(layer->bmax, bmax); - layer->bmin[1] = bmin[1] + hmin*chf.ch; - layer->bmax[1] = bmin[1] + hmax*chf.ch; - layer->hmin = hmin; - layer->hmax = hmax; - - // Update usable data region. - layer->minx = layer->width; - layer->maxx = 0; - layer->miny = layer->height; - layer->maxy = 0; - - // Copy height and area from compact heightfield. - for (int y = 0; y < lh; ++y) - { - for (int x = 0; x < lw; ++x) - { - const int cx = borderSize+x; - const int cy = borderSize+y; - const rcCompactCell& c = chf.cells[cx+cy*w]; - for (int j = (int)c.index, nj = (int)(c.index+c.count); j < nj; ++j) - { - const rcCompactSpan& s = chf.spans[j]; - // Skip unassigned regions. - if (srcReg[j] == 0xff) - continue; - // Skip of does nto belong to current layer. - unsigned char lid = regs[srcReg[j]].layerId; - if (lid != curId) - continue; - - // Update data bounds. - layer->minx = rcMin(layer->minx, x); - layer->maxx = rcMax(layer->maxx, x); - layer->miny = rcMin(layer->miny, y); - layer->maxy = rcMax(layer->maxy, y); - - // Store height and area type. - const int idx = x+y*lw; - layer->heights[idx] = (unsigned char)(s.y - hmin); - layer->areas[idx] = chf.areas[j]; - - // Check connection. - unsigned char portal = 0; - unsigned char con = 0; - for (int dir = 0; dir < 4; ++dir) - { - if (rcGetCon(s, dir) != RC_NOT_CONNECTED) - { - const int ax = cx + rcGetDirOffsetX(dir); - const int ay = cy + rcGetDirOffsetY(dir); - const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir); - unsigned char alid = srcReg[ai] != 0xff ? regs[srcReg[ai]].layerId : 0xff; - // Portal mask - if (chf.areas[ai] != RC_NULL_AREA && lid != alid) - { - portal |= (unsigned char)(1< hmin) - layer->heights[idx] = rcMax(layer->heights[idx], (unsigned char)(as.y - hmin)); - } - // Valid connection mask - if (chf.areas[ai] != RC_NULL_AREA && lid == alid) - { - const int nx = ax - borderSize; - const int ny = ay - borderSize; - if (nx >= 0 && ny >= 0 && nx < lw && ny < lh) - con |= (unsigned char)(1<cons[idx] = (portal << 4) | con; - } - } - } - - if (layer->minx > layer->maxx) - layer->minx = layer->maxx = 0; - if (layer->miny > layer->maxy) - layer->miny = layer->maxy = 0; - } - - return true; -} diff --git a/recastnavigation/Recast/Source/RecastMesh.cpp b/recastnavigation/Recast/Source/RecastMesh.cpp deleted file mode 100644 index e99eaeb..0000000 --- a/recastnavigation/Recast/Source/RecastMesh.cpp +++ /dev/null @@ -1,1552 +0,0 @@ -// -// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org -// -// This software is provided 'as-is', without any express or implied -// warranty. In no event will the authors be held liable for any damages -// arising from the use of this software. -// Permission is granted to anyone to use this software for any purpose, -// including commercial applications, and to alter it and redistribute it -// freely, subject to the following restrictions: -// 1. The origin of this software must not be misrepresented; you must not -// claim that you wrote the original software. If you use this software -// in a product, an acknowledgment in the product documentation would be -// appreciated but is not required. -// 2. Altered source versions must be plainly marked as such, and must not be -// misrepresented as being the original software. -// 3. This notice may not be removed or altered from any source distribution. -// - -#define _USE_MATH_DEFINES -#include -#include -#include -#include "Recast.h" -#include "RecastAlloc.h" -#include "RecastAssert.h" - -struct rcEdge -{ - unsigned short vert[2]; - unsigned short polyEdge[2]; - unsigned short poly[2]; -}; - -static bool buildMeshAdjacency(unsigned short* polys, const int npolys, - const int nverts, const int vertsPerPoly) -{ - // Based on code by Eric Lengyel from: - // http://www.terathon.com/code/edges.php - - int maxEdgeCount = npolys*vertsPerPoly; - unsigned short* firstEdge = (unsigned short*)rcAlloc(sizeof(unsigned short)*(nverts + maxEdgeCount), RC_ALLOC_TEMP); - if (!firstEdge) - return false; - unsigned short* nextEdge = firstEdge + nverts; - int edgeCount = 0; - - rcEdge* edges = (rcEdge*)rcAlloc(sizeof(rcEdge)*maxEdgeCount, RC_ALLOC_TEMP); - if (!edges) - { - rcFree(firstEdge); - return false; - } - - for (int i = 0; i < nverts; i++) - firstEdge[i] = RC_MESH_NULL_IDX; - - for (int i = 0; i < npolys; ++i) - { - unsigned short* t = &polys[i*vertsPerPoly*2]; - for (int j = 0; j < vertsPerPoly; ++j) - { - if (t[j] == RC_MESH_NULL_IDX) break; - unsigned short v0 = t[j]; - unsigned short v1 = (j+1 >= vertsPerPoly || t[j+1] == RC_MESH_NULL_IDX) ? t[0] : t[j+1]; - if (v0 < v1) - { - rcEdge& edge = edges[edgeCount]; - edge.vert[0] = v0; - edge.vert[1] = v1; - edge.poly[0] = (unsigned short)i; - edge.polyEdge[0] = (unsigned short)j; - edge.poly[1] = (unsigned short)i; - edge.polyEdge[1] = 0; - // Insert edge - nextEdge[edgeCount] = firstEdge[v0]; - firstEdge[v0] = (unsigned short)edgeCount; - edgeCount++; - } - } - } - - for (int i = 0; i < npolys; ++i) - { - unsigned short* t = &polys[i*vertsPerPoly*2]; - for (int j = 0; j < vertsPerPoly; ++j) - { - if (t[j] == RC_MESH_NULL_IDX) break; - unsigned short v0 = t[j]; - unsigned short v1 = (j+1 >= vertsPerPoly || t[j+1] == RC_MESH_NULL_IDX) ? t[0] : t[j+1]; - if (v0 > v1) - { - for (unsigned short e = firstEdge[v1]; e != RC_MESH_NULL_IDX; e = nextEdge[e]) - { - rcEdge& edge = edges[e]; - if (edge.vert[1] == v0 && edge.poly[0] == edge.poly[1]) - { - edge.poly[1] = (unsigned short)i; - edge.polyEdge[1] = (unsigned short)j; - break; - } - } - } - } - } - - // Store adjacency - for (int i = 0; i < edgeCount; ++i) - { - const rcEdge& e = edges[i]; - if (e.poly[0] != e.poly[1]) - { - unsigned short* p0 = &polys[e.poly[0]*vertsPerPoly*2]; - unsigned short* p1 = &polys[e.poly[1]*vertsPerPoly*2]; - p0[vertsPerPoly + e.polyEdge[0]] = e.poly[1]; - p1[vertsPerPoly + e.polyEdge[1]] = e.poly[0]; - } - } - - rcFree(firstEdge); - rcFree(edges); - - return true; -} - - -static const int VERTEX_BUCKET_COUNT = (1<<12); - -inline int computeVertexHash(int x, int y, int z) -{ - const unsigned int h1 = 0x8da6b343; // Large multiplicative constants; - const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes - const unsigned int h3 = 0xcb1ab31f; - unsigned int n = h1 * x + h2 * y + h3 * z; - return (int)(n & (VERTEX_BUCKET_COUNT-1)); -} - -static unsigned short addVertex(unsigned short x, unsigned short y, unsigned short z, - unsigned short* verts, int* firstVert, int* nextVert, int& nv) -{ - int bucket = computeVertexHash(x, 0, z); - int i = firstVert[bucket]; - - while (i != -1) - { - const unsigned short* v = &verts[i*3]; - if (v[0] == x && (rcAbs(v[1] - y) <= 2) && v[2] == z) - return (unsigned short)i; - i = nextVert[i]; // next - } - - // Could not find, create new. - i = nv; nv++; - unsigned short* v = &verts[i*3]; - v[0] = x; - v[1] = y; - v[2] = z; - nextVert[i] = firstVert[bucket]; - firstVert[bucket] = i; - - return (unsigned short)i; -} - -// Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv). -inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; } -inline int next(int i, int n) { return i+1 < n ? i+1 : 0; } - -inline int area2(const int* a, const int* b, const int* c) -{ - return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]); -} - -// Exclusive or: true iff exactly one argument is true. -// The arguments are negated to ensure that they are 0/1 -// values. Then the bitwise Xor operator may apply. -// (This idea is due to Michael Baldwin.) -inline bool xorb(bool x, bool y) -{ - return !x ^ !y; -} - -// Returns true iff c is strictly to the left of the directed -// line through a to b. -inline bool left(const int* a, const int* b, const int* c) -{ - return area2(a, b, c) < 0; -} - -inline bool leftOn(const int* a, const int* b, const int* c) -{ - return area2(a, b, c) <= 0; -} - -inline bool collinear(const int* a, const int* b, const int* c) -{ - return area2(a, b, c) == 0; -} - -// Returns true iff ab properly intersects cd: they share -// a point interior to both segments. The properness of the -// intersection is ensured by using strict leftness. -static bool intersectProp(const int* a, const int* b, const int* c, const int* d) -{ - // Eliminate improper cases. - if (collinear(a,b,c) || collinear(a,b,d) || - collinear(c,d,a) || collinear(c,d,b)) - return false; - - return xorb(left(a,b,c), left(a,b,d)) && xorb(left(c,d,a), left(c,d,b)); -} - -// Returns T iff (a,b,c) are collinear and point c lies -// on the closed segement ab. -static bool between(const int* a, const int* b, const int* c) -{ - if (!collinear(a, b, c)) - return false; - // If ab not vertical, check betweenness on x; else on y. - if (a[0] != b[0]) - return ((a[0] <= c[0]) && (c[0] <= b[0])) || ((a[0] >= c[0]) && (c[0] >= b[0])); - else - return ((a[2] <= c[2]) && (c[2] <= b[2])) || ((a[2] >= c[2]) && (c[2] >= b[2])); -} - -// Returns true iff segments ab and cd intersect, properly or improperly. -static bool intersect(const int* a, const int* b, const int* c, const int* d) -{ - if (intersectProp(a, b, c, d)) - return true; - else if (between(a, b, c) || between(a, b, d) || - between(c, d, a) || between(c, d, b)) - return true; - else - return false; -} - -static bool vequal(const int* a, const int* b) -{ - return a[0] == b[0] && a[2] == b[2]; -} - -// Returns T iff (v_i, v_j) is a proper internal *or* external -// diagonal of P, *ignoring edges incident to v_i and v_j*. -static bool diagonalie(int i, int j, int n, const int* verts, int* indices) -{ - const int* d0 = &verts[(indices[i] & 0x0fffffff) * 4]; - const int* d1 = &verts[(indices[j] & 0x0fffffff) * 4]; - - // For each edge (k,k+1) of P - for (int k = 0; k < n; k++) - { - int k1 = next(k, n); - // Skip edges incident to i or j - if (!((k == i) || (k1 == i) || (k == j) || (k1 == j))) - { - const int* p0 = &verts[(indices[k] & 0x0fffffff) * 4]; - const int* p1 = &verts[(indices[k1] & 0x0fffffff) * 4]; - - if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1)) - continue; - - if (intersect(d0, d1, p0, p1)) - return false; - } - } - return true; -} - -// Returns true iff the diagonal (i,j) is strictly internal to the -// polygon P in the neighborhood of the i endpoint. -static bool inCone(int i, int j, int n, const int* verts, int* indices) -{ - const int* pi = &verts[(indices[i] & 0x0fffffff) * 4]; - const int* pj = &verts[(indices[j] & 0x0fffffff) * 4]; - const int* pi1 = &verts[(indices[next(i, n)] & 0x0fffffff) * 4]; - const int* pin1 = &verts[(indices[prev(i, n)] & 0x0fffffff) * 4]; - - // If P[i] is a convex vertex [ i+1 left or on (i-1,i) ]. - if (leftOn(pin1, pi, pi1)) - return left(pi, pj, pin1) && left(pj, pi, pi1); - // Assume (i-1,i,i+1) not collinear. - // else P[i] is reflex. - return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1)); -} - -// Returns T iff (v_i, v_j) is a proper internal -// diagonal of P. -static bool diagonal(int i, int j, int n, const int* verts, int* indices) -{ - return inCone(i, j, n, verts, indices) && diagonalie(i, j, n, verts, indices); -} - - -static bool diagonalieLoose(int i, int j, int n, const int* verts, int* indices) -{ - const int* d0 = &verts[(indices[i] & 0x0fffffff) * 4]; - const int* d1 = &verts[(indices[j] & 0x0fffffff) * 4]; - - // For each edge (k,k+1) of P - for (int k = 0; k < n; k++) - { - int k1 = next(k, n); - // Skip edges incident to i or j - if (!((k == i) || (k1 == i) || (k == j) || (k1 == j))) - { - const int* p0 = &verts[(indices[k] & 0x0fffffff) * 4]; - const int* p1 = &verts[(indices[k1] & 0x0fffffff) * 4]; - - if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1)) - continue; - - if (intersectProp(d0, d1, p0, p1)) - return false; - } - } - return true; -} - -static bool inConeLoose(int i, int j, int n, const int* verts, int* indices) -{ - const int* pi = &verts[(indices[i] & 0x0fffffff) * 4]; - const int* pj = &verts[(indices[j] & 0x0fffffff) * 4]; - const int* pi1 = &verts[(indices[next(i, n)] & 0x0fffffff) * 4]; - const int* pin1 = &verts[(indices[prev(i, n)] & 0x0fffffff) * 4]; - - // If P[i] is a convex vertex [ i+1 left or on (i-1,i) ]. - if (leftOn(pin1, pi, pi1)) - return leftOn(pi, pj, pin1) && leftOn(pj, pi, pi1); - // Assume (i-1,i,i+1) not collinear. - // else P[i] is reflex. - return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1)); -} - -static bool diagonalLoose(int i, int j, int n, const int* verts, int* indices) -{ - return inConeLoose(i, j, n, verts, indices) && diagonalieLoose(i, j, n, verts, indices); -} - - -static int triangulate(int n, const int* verts, int* indices, int* tris) -{ - int ntris = 0; - int* dst = tris; - - // The last bit of the index is used to indicate if the vertex can be removed. - for (int i = 0; i < n; i++) - { - int i1 = next(i, n); - int i2 = next(i1, n); - if (diagonal(i, i2, n, verts, indices)) - indices[i1] |= 0x80000000; - } - - while (n > 3) - { - int minLen = -1; - int mini = -1; - for (int i = 0; i < n; i++) - { - int i1 = next(i, n); - if (indices[i1] & 0x80000000) - { - const int* p0 = &verts[(indices[i] & 0x0fffffff) * 4]; - const int* p2 = &verts[(indices[next(i1, n)] & 0x0fffffff) * 4]; - - int dx = p2[0] - p0[0]; - int dy = p2[2] - p0[2]; - int len = dx*dx + dy*dy; - - if (minLen < 0 || len < minLen) - { - minLen = len; - mini = i; - } - } - } - - if (mini == -1) - { - // We might get here because the contour has overlapping segments, like this: - // - // A o-o=====o---o B - // / |C D| \. - // o o o o - // : : : : - // We'll try to recover by loosing up the inCone test a bit so that a diagonal - // like A-B or C-D can be found and we can continue. - minLen = -1; - mini = -1; - for (int i = 0; i < n; i++) - { - int i1 = next(i, n); - int i2 = next(i1, n); - if (diagonalLoose(i, i2, n, verts, indices)) - { - const int* p0 = &verts[(indices[i] & 0x0fffffff) * 4]; - const int* p2 = &verts[(indices[next(i2, n)] & 0x0fffffff) * 4]; - int dx = p2[0] - p0[0]; - int dy = p2[2] - p0[2]; - int len = dx*dx + dy*dy; - - if (minLen < 0 || len < minLen) - { - minLen = len; - mini = i; - } - } - } - if (mini == -1) - { - // The contour is messed up. This sometimes happens - // if the contour simplification is too aggressive. - return -ntris; - } - } - - int i = mini; - int i1 = next(i, n); - int i2 = next(i1, n); - - *dst++ = indices[i] & 0x0fffffff; - *dst++ = indices[i1] & 0x0fffffff; - *dst++ = indices[i2] & 0x0fffffff; - ntris++; - - // Removes P[i1] by copying P[i+1]...P[n-1] left one index. - n--; - for (int k = i1; k < n; k++) - indices[k] = indices[k+1]; - - if (i1 >= n) i1 = 0; - i = prev(i1,n); - // Update diagonal flags. - if (diagonal(prev(i, n), i1, n, verts, indices)) - indices[i] |= 0x80000000; - else - indices[i] &= 0x0fffffff; - - if (diagonal(i, next(i1, n), n, verts, indices)) - indices[i1] |= 0x80000000; - else - indices[i1] &= 0x0fffffff; - } - - // Append the remaining triangle. - *dst++ = indices[0] & 0x0fffffff; - *dst++ = indices[1] & 0x0fffffff; - *dst++ = indices[2] & 0x0fffffff; - ntris++; - - return ntris; -} - -static int countPolyVerts(const unsigned short* p, const int nvp) -{ - for (int i = 0; i < nvp; ++i) - if (p[i] == RC_MESH_NULL_IDX) - return i; - return nvp; -} - -inline bool uleft(const unsigned short* a, const unsigned short* b, const unsigned short* c) -{ - return ((int)b[0] - (int)a[0]) * ((int)c[2] - (int)a[2]) - - ((int)c[0] - (int)a[0]) * ((int)b[2] - (int)a[2]) < 0; -} - -static int getPolyMergeValue(unsigned short* pa, unsigned short* pb, - const unsigned short* verts, int& ea, int& eb, - const int nvp) -{ - const int na = countPolyVerts(pa, nvp); - const int nb = countPolyVerts(pb, nvp); - - // If the merged polygon would be too big, do not merge. - if (na+nb-2 > nvp) - return -1; - - // Check if the polygons share an edge. - ea = -1; - eb = -1; - - for (int i = 0; i < na; ++i) - { - unsigned short va0 = pa[i]; - unsigned short va1 = pa[(i+1) % na]; - if (va0 > va1) - rcSwap(va0, va1); - for (int j = 0; j < nb; ++j) - { - unsigned short vb0 = pb[j]; - unsigned short vb1 = pb[(j+1) % nb]; - if (vb0 > vb1) - rcSwap(vb0, vb1); - if (va0 == vb0 && va1 == vb1) - { - ea = i; - eb = j; - break; - } - } - } - - // No common edge, cannot merge. - if (ea == -1 || eb == -1) - return -1; - - // Check to see if the merged polygon would be convex. - unsigned short va, vb, vc; - - va = pa[(ea+na-1) % na]; - vb = pa[ea]; - vc = pb[(eb+2) % nb]; - if (!uleft(&verts[va*3], &verts[vb*3], &verts[vc*3])) - return -1; - - va = pb[(eb+nb-1) % nb]; - vb = pb[eb]; - vc = pa[(ea+2) % na]; - if (!uleft(&verts[va*3], &verts[vb*3], &verts[vc*3])) - return -1; - - va = pa[ea]; - vb = pa[(ea+1)%na]; - - int dx = (int)verts[va*3+0] - (int)verts[vb*3+0]; - int dy = (int)verts[va*3+2] - (int)verts[vb*3+2]; - - return dx*dx + dy*dy; -} - -static void mergePolyVerts(unsigned short* pa, unsigned short* pb, int ea, int eb, - unsigned short* tmp, const int nvp) -{ - const int na = countPolyVerts(pa, nvp); - const int nb = countPolyVerts(pb, nvp); - - // Merge polygons. - memset(tmp, 0xff, sizeof(unsigned short)*nvp); - int n = 0; - // Add pa - for (int i = 0; i < na-1; ++i) - tmp[n++] = pa[(ea+1+i) % na]; - // Add pb - for (int i = 0; i < nb-1; ++i) - tmp[n++] = pb[(eb+1+i) % nb]; - - memcpy(pa, tmp, sizeof(unsigned short)*nvp); -} - - -static void pushFront(int v, int* arr, int& an) -{ - an++; - for (int i = an-1; i > 0; --i) arr[i] = arr[i-1]; - arr[0] = v; -} - -static void pushBack(int v, int* arr, int& an) -{ - arr[an] = v; - an++; -} - -static bool canRemoveVertex(rcContext* ctx, rcPolyMesh& mesh, const unsigned short rem) -{ - const int nvp = mesh.nvp; - - // Count number of polygons to remove. - int numRemovedVerts = 0; - int numTouchedVerts = 0; - int numRemainingEdges = 0; - for (int i = 0; i < mesh.npolys; ++i) - { - unsigned short* p = &mesh.polys[i*nvp*2]; - const int nv = countPolyVerts(p, nvp); - int numRemoved = 0; - int numVerts = 0; - for (int j = 0; j < nv; ++j) - { - if (p[j] == rem) - { - numTouchedVerts++; - numRemoved++; - } - numVerts++; - } - if (numRemoved) - { - numRemovedVerts += numRemoved; - numRemainingEdges += numVerts-(numRemoved+1); - } - } - - // There would be too few edges remaining to create a polygon. - // This can happen for example when a tip of a triangle is marked - // as deletion, but there are no other polys that share the vertex. - // In this case, the vertex should not be removed. - if (numRemainingEdges <= 2) - return false; - - // Find edges which share the removed vertex. - const int maxEdges = numTouchedVerts*2; - int nedges = 0; - rcScopedDelete edges((int*)rcAlloc(sizeof(int)*maxEdges*3, RC_ALLOC_TEMP)); - if (!edges) - { - ctx->log(RC_LOG_WARNING, "canRemoveVertex: Out of memory 'edges' (%d).", maxEdges*3); - return false; - } - - for (int i = 0; i < mesh.npolys; ++i) - { - unsigned short* p = &mesh.polys[i*nvp*2]; - const int nv = countPolyVerts(p, nvp); - - // Collect edges which touches the removed vertex. - for (int j = 0, k = nv-1; j < nv; k = j++) - { - if (p[j] == rem || p[k] == rem) - { - // Arrange edge so that a=rem. - int a = p[j], b = p[k]; - if (b == rem) - rcSwap(a,b); - - // Check if the edge exists - bool exists = false; - for (int m = 0; m < nedges; ++m) - { - int* e = &edges[m*3]; - if (e[1] == b) - { - // Exists, increment vertex share count. - e[2]++; - exists = true; - } - } - // Add new edge. - if (!exists) - { - int* e = &edges[nedges*3]; - e[0] = a; - e[1] = b; - e[2] = 1; - nedges++; - } - } - } - } - - // There should be no more than 2 open edges. - // This catches the case that two non-adjacent polygons - // share the removed vertex. In that case, do not remove the vertex. - int numOpenEdges = 0; - for (int i = 0; i < nedges; ++i) - { - if (edges[i*3+2] < 2) - numOpenEdges++; - } - if (numOpenEdges > 2) - return false; - - return true; -} - -static bool removeVertex(rcContext* ctx, rcPolyMesh& mesh, const unsigned short rem, const int maxTris) -{ - const int nvp = mesh.nvp; - - // Count number of polygons to remove. - int numRemovedVerts = 0; - for (int i = 0; i < mesh.npolys; ++i) - { - unsigned short* p = &mesh.polys[i*nvp*2]; - const int nv = countPolyVerts(p, nvp); - for (int j = 0; j < nv; ++j) - { - if (p[j] == rem) - numRemovedVerts++; - } - } - - int nedges = 0; - rcScopedDelete edges((int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp*4, RC_ALLOC_TEMP)); - if (!edges) - { - ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'edges' (%d).", numRemovedVerts*nvp*4); - return false; - } - - int nhole = 0; - rcScopedDelete hole((int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp, RC_ALLOC_TEMP)); - if (!hole) - { - ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'hole' (%d).", numRemovedVerts*nvp); - return false; - } - - int nhreg = 0; - rcScopedDelete hreg((int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp, RC_ALLOC_TEMP)); - if (!hreg) - { - ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'hreg' (%d).", numRemovedVerts*nvp); - return false; - } - - int nharea = 0; - rcScopedDelete harea((int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp, RC_ALLOC_TEMP)); - if (!harea) - { - ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'harea' (%d).", numRemovedVerts*nvp); - return false; - } - - for (int i = 0; i < mesh.npolys; ++i) - { - unsigned short* p = &mesh.polys[i*nvp*2]; - const int nv = countPolyVerts(p, nvp); - bool hasRem = false; - for (int j = 0; j < nv; ++j) - if (p[j] == rem) hasRem = true; - if (hasRem) - { - // Collect edges which does not touch the removed vertex. - for (int j = 0, k = nv-1; j < nv; k = j++) - { - if (p[j] != rem && p[k] != rem) - { - int* e = &edges[nedges*4]; - e[0] = p[k]; - e[1] = p[j]; - e[2] = mesh.regs[i]; - e[3] = mesh.areas[i]; - nedges++; - } - } - // Remove the polygon. - unsigned short* p2 = &mesh.polys[(mesh.npolys-1)*nvp*2]; - if (p != p2) - memcpy(p,p2,sizeof(unsigned short)*nvp); - memset(p+nvp,0xff,sizeof(unsigned short)*nvp); - mesh.regs[i] = mesh.regs[mesh.npolys-1]; - mesh.areas[i] = mesh.areas[mesh.npolys-1]; - mesh.npolys--; - --i; - } - } - - // Remove vertex. - for (int i = (int)rem; i < mesh.nverts - 1; ++i) - { - mesh.verts[i*3+0] = mesh.verts[(i+1)*3+0]; - mesh.verts[i*3+1] = mesh.verts[(i+1)*3+1]; - mesh.verts[i*3+2] = mesh.verts[(i+1)*3+2]; - } - mesh.nverts--; - - // Adjust indices to match the removed vertex layout. - for (int i = 0; i < mesh.npolys; ++i) - { - unsigned short* p = &mesh.polys[i*nvp*2]; - const int nv = countPolyVerts(p, nvp); - for (int j = 0; j < nv; ++j) - if (p[j] > rem) p[j]--; - } - for (int i = 0; i < nedges; ++i) - { - if (edges[i*4+0] > rem) edges[i*4+0]--; - if (edges[i*4+1] > rem) edges[i*4+1]--; - } - - if (nedges == 0) - return true; - - // Start with one vertex, keep appending connected - // segments to the start and end of the hole. - pushBack(edges[0], hole, nhole); - pushBack(edges[2], hreg, nhreg); - pushBack(edges[3], harea, nharea); - - while (nedges) - { - bool match = false; - - for (int i = 0; i < nedges; ++i) - { - const int ea = edges[i*4+0]; - const int eb = edges[i*4+1]; - const int r = edges[i*4+2]; - const int a = edges[i*4+3]; - bool add = false; - if (hole[0] == eb) - { - // The segment matches the beginning of the hole boundary. - pushFront(ea, hole, nhole); - pushFront(r, hreg, nhreg); - pushFront(a, harea, nharea); - add = true; - } - else if (hole[nhole-1] == ea) - { - // The segment matches the end of the hole boundary. - pushBack(eb, hole, nhole); - pushBack(r, hreg, nhreg); - pushBack(a, harea, nharea); - add = true; - } - if (add) - { - // The edge segment was added, remove it. - edges[i*4+0] = edges[(nedges-1)*4+0]; - edges[i*4+1] = edges[(nedges-1)*4+1]; - edges[i*4+2] = edges[(nedges-1)*4+2]; - edges[i*4+3] = edges[(nedges-1)*4+3]; - --nedges; - match = true; - --i; - } - } - - if (!match) - break; - } - - rcScopedDelete tris((int*)rcAlloc(sizeof(int)*nhole*3, RC_ALLOC_TEMP)); - if (!tris) - { - ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'tris' (%d).", nhole*3); - return false; - } - - rcScopedDelete tverts((int*)rcAlloc(sizeof(int)*nhole*4, RC_ALLOC_TEMP)); - if (!tverts) - { - ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'tverts' (%d).", nhole*4); - return false; - } - - rcScopedDelete thole((int*)rcAlloc(sizeof(int)*nhole, RC_ALLOC_TEMP)); - if (!thole) - { - ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'thole' (%d).", nhole); - return false; - } - - // Generate temp vertex array for triangulation. - for (int i = 0; i < nhole; ++i) - { - const int pi = hole[i]; - tverts[i*4+0] = mesh.verts[pi*3+0]; - tverts[i*4+1] = mesh.verts[pi*3+1]; - tverts[i*4+2] = mesh.verts[pi*3+2]; - tverts[i*4+3] = 0; - thole[i] = i; - } - - // Triangulate the hole. - int ntris = triangulate(nhole, &tverts[0], &thole[0], tris); - if (ntris < 0) - { - ntris = -ntris; - ctx->log(RC_LOG_WARNING, "removeVertex: triangulate() returned bad results."); - } - - // Merge the hole triangles back to polygons. - rcScopedDelete polys((unsigned short*)rcAlloc(sizeof(unsigned short)*(ntris+1)*nvp, RC_ALLOC_TEMP)); - if (!polys) - { - ctx->log(RC_LOG_ERROR, "removeVertex: Out of memory 'polys' (%d).", (ntris+1)*nvp); - return false; - } - rcScopedDelete pregs((unsigned short*)rcAlloc(sizeof(unsigned short)*ntris, RC_ALLOC_TEMP)); - if (!pregs) - { - ctx->log(RC_LOG_ERROR, "removeVertex: Out of memory 'pregs' (%d).", ntris); - return false; - } - rcScopedDelete pareas((unsigned char*)rcAlloc(sizeof(unsigned char)*ntris, RC_ALLOC_TEMP)); - if (!pareas) - { - ctx->log(RC_LOG_ERROR, "removeVertex: Out of memory 'pareas' (%d).", ntris); - return false; - } - - unsigned short* tmpPoly = &polys[ntris*nvp]; - - // Build initial polygons. - int npolys = 0; - memset(polys, 0xff, ntris*nvp*sizeof(unsigned short)); - for (int j = 0; j < ntris; ++j) - { - int* t = &tris[j*3]; - if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2]) - { - polys[npolys*nvp+0] = (unsigned short)hole[t[0]]; - polys[npolys*nvp+1] = (unsigned short)hole[t[1]]; - polys[npolys*nvp+2] = (unsigned short)hole[t[2]]; - - // If this polygon covers multiple region types then - // mark it as such - if (hreg[t[0]] != hreg[t[1]] || hreg[t[1]] != hreg[t[2]]) - pregs[npolys] = RC_MULTIPLE_REGS; - else - pregs[npolys] = (unsigned short)hreg[t[0]]; - - pareas[npolys] = (unsigned char)harea[t[0]]; - npolys++; - } - } - if (!npolys) - return true; - - // Merge polygons. - if (nvp > 3) - { - for (;;) - { - // Find best polygons to merge. - int bestMergeVal = 0; - int bestPa = 0, bestPb = 0, bestEa = 0, bestEb = 0; - - for (int j = 0; j < npolys-1; ++j) - { - unsigned short* pj = &polys[j*nvp]; - for (int k = j+1; k < npolys; ++k) - { - unsigned short* pk = &polys[k*nvp]; - int ea, eb; - int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb, nvp); - if (v > bestMergeVal) - { - bestMergeVal = v; - bestPa = j; - bestPb = k; - bestEa = ea; - bestEb = eb; - } - } - } - - if (bestMergeVal > 0) - { - // Found best, merge. - unsigned short* pa = &polys[bestPa*nvp]; - unsigned short* pb = &polys[bestPb*nvp]; - mergePolyVerts(pa, pb, bestEa, bestEb, tmpPoly, nvp); - if (pregs[bestPa] != pregs[bestPb]) - pregs[bestPa] = RC_MULTIPLE_REGS; - - unsigned short* last = &polys[(npolys-1)*nvp]; - if (pb != last) - memcpy(pb, last, sizeof(unsigned short)*nvp); - pregs[bestPb] = pregs[npolys-1]; - pareas[bestPb] = pareas[npolys-1]; - npolys--; - } - else - { - // Could not merge any polygons, stop. - break; - } - } - } - - // Store polygons. - for (int i = 0; i < npolys; ++i) - { - if (mesh.npolys >= maxTris) break; - unsigned short* p = &mesh.polys[mesh.npolys*nvp*2]; - memset(p,0xff,sizeof(unsigned short)*nvp*2); - for (int j = 0; j < nvp; ++j) - p[j] = polys[i*nvp+j]; - mesh.regs[mesh.npolys] = pregs[i]; - mesh.areas[mesh.npolys] = pareas[i]; - mesh.npolys++; - if (mesh.npolys > maxTris) - { - ctx->log(RC_LOG_ERROR, "removeVertex: Too many polygons %d (max:%d).", mesh.npolys, maxTris); - return false; - } - } - - return true; -} - -/// @par -/// -/// @note If the mesh data is to be used to construct a Detour navigation mesh, then the upper -/// limit must be retricted to <= #DT_VERTS_PER_POLYGON. -/// -/// @see rcAllocPolyMesh, rcContourSet, rcPolyMesh, rcConfig -bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, const int nvp, rcPolyMesh& mesh) -{ - rcAssert(ctx); - - rcScopedTimer timer(ctx, RC_TIMER_BUILD_POLYMESH); - - rcVcopy(mesh.bmin, cset.bmin); - rcVcopy(mesh.bmax, cset.bmax); - mesh.cs = cset.cs; - mesh.ch = cset.ch; - mesh.borderSize = cset.borderSize; - mesh.maxEdgeError = cset.maxError; - - int maxVertices = 0; - int maxTris = 0; - int maxVertsPerCont = 0; - for (int i = 0; i < cset.nconts; ++i) - { - // Skip null contours. - if (cset.conts[i].nverts < 3) continue; - maxVertices += cset.conts[i].nverts; - maxTris += cset.conts[i].nverts - 2; - maxVertsPerCont = rcMax(maxVertsPerCont, cset.conts[i].nverts); - } - - if (maxVertices >= 0xfffe) - { - ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Too many vertices %d.", maxVertices); - return false; - } - - rcScopedDelete vflags((unsigned char*)rcAlloc(sizeof(unsigned char)*maxVertices, RC_ALLOC_TEMP)); - if (!vflags) - { - ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'vflags' (%d).", maxVertices); - return false; - } - memset(vflags, 0, maxVertices); - - mesh.verts = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxVertices*3, RC_ALLOC_PERM); - if (!mesh.verts) - { - ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.verts' (%d).", maxVertices); - return false; - } - mesh.polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxTris*nvp*2, RC_ALLOC_PERM); - if (!mesh.polys) - { - ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.polys' (%d).", maxTris*nvp*2); - return false; - } - mesh.regs = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxTris, RC_ALLOC_PERM); - if (!mesh.regs) - { - ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.regs' (%d).", maxTris); - return false; - } - mesh.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxTris, RC_ALLOC_PERM); - if (!mesh.areas) - { - ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.areas' (%d).", maxTris); - return false; - } - - mesh.nverts = 0; - mesh.npolys = 0; - mesh.nvp = nvp; - mesh.maxpolys = maxTris; - - memset(mesh.verts, 0, sizeof(unsigned short)*maxVertices*3); - memset(mesh.polys, 0xff, sizeof(unsigned short)*maxTris*nvp*2); - memset(mesh.regs, 0, sizeof(unsigned short)*maxTris); - memset(mesh.areas, 0, sizeof(unsigned char)*maxTris); - - rcScopedDelete nextVert((int*)rcAlloc(sizeof(int)*maxVertices, RC_ALLOC_TEMP)); - if (!nextVert) - { - ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'nextVert' (%d).", maxVertices); - return false; - } - memset(nextVert, 0, sizeof(int)*maxVertices); - - rcScopedDelete firstVert((int*)rcAlloc(sizeof(int)*VERTEX_BUCKET_COUNT, RC_ALLOC_TEMP)); - if (!firstVert) - { - ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'firstVert' (%d).", VERTEX_BUCKET_COUNT); - return false; - } - for (int i = 0; i < VERTEX_BUCKET_COUNT; ++i) - firstVert[i] = -1; - - rcScopedDelete indices((int*)rcAlloc(sizeof(int)*maxVertsPerCont, RC_ALLOC_TEMP)); - if (!indices) - { - ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'indices' (%d).", maxVertsPerCont); - return false; - } - rcScopedDelete tris((int*)rcAlloc(sizeof(int)*maxVertsPerCont*3, RC_ALLOC_TEMP)); - if (!tris) - { - ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'tris' (%d).", maxVertsPerCont*3); - return false; - } - rcScopedDelete polys((unsigned short*)rcAlloc(sizeof(unsigned short)*(maxVertsPerCont+1)*nvp, RC_ALLOC_TEMP)); - if (!polys) - { - ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'polys' (%d).", maxVertsPerCont*nvp); - return false; - } - unsigned short* tmpPoly = &polys[maxVertsPerCont*nvp]; - - for (int i = 0; i < cset.nconts; ++i) - { - rcContour& cont = cset.conts[i]; - - // Skip null contours. - if (cont.nverts < 3) - continue; - - // Triangulate contour - for (int j = 0; j < cont.nverts; ++j) - indices[j] = j; - - int ntris = triangulate(cont.nverts, cont.verts, &indices[0], &tris[0]); - if (ntris <= 0) - { - // Bad triangulation, should not happen. -/* printf("\tconst float bmin[3] = {%ff,%ff,%ff};\n", cset.bmin[0], cset.bmin[1], cset.bmin[2]); - printf("\tconst float cs = %ff;\n", cset.cs); - printf("\tconst float ch = %ff;\n", cset.ch); - printf("\tconst int verts[] = {\n"); - for (int k = 0; k < cont.nverts; ++k) - { - const int* v = &cont.verts[k*4]; - printf("\t\t%d,%d,%d,%d,\n", v[0], v[1], v[2], v[3]); - } - printf("\t};\n\tconst int nverts = sizeof(verts)/(sizeof(int)*4);\n");*/ - ctx->log(RC_LOG_WARNING, "rcBuildPolyMesh: Bad triangulation Contour %d.", i); - ntris = -ntris; - } - - // Add and merge vertices. - for (int j = 0; j < cont.nverts; ++j) - { - const int* v = &cont.verts[j*4]; - indices[j] = addVertex((unsigned short)v[0], (unsigned short)v[1], (unsigned short)v[2], - mesh.verts, firstVert, nextVert, mesh.nverts); - if (v[3] & RC_BORDER_VERTEX) - { - // This vertex should be removed. - vflags[indices[j]] = 1; - } - } - - // Build initial polygons. - int npolys = 0; - memset(polys, 0xff, maxVertsPerCont*nvp*sizeof(unsigned short)); - for (int j = 0; j < ntris; ++j) - { - int* t = &tris[j*3]; - if (t[0] != t[1] && t[0] != t[2] && t[1] != t[2]) - { - polys[npolys*nvp+0] = (unsigned short)indices[t[0]]; - polys[npolys*nvp+1] = (unsigned short)indices[t[1]]; - polys[npolys*nvp+2] = (unsigned short)indices[t[2]]; - npolys++; - } - } - if (!npolys) - continue; - - // Merge polygons. - if (nvp > 3) - { - for(;;) - { - // Find best polygons to merge. - int bestMergeVal = 0; - int bestPa = 0, bestPb = 0, bestEa = 0, bestEb = 0; - - for (int j = 0; j < npolys-1; ++j) - { - unsigned short* pj = &polys[j*nvp]; - for (int k = j+1; k < npolys; ++k) - { - unsigned short* pk = &polys[k*nvp]; - int ea, eb; - int v = getPolyMergeValue(pj, pk, mesh.verts, ea, eb, nvp); - if (v > bestMergeVal) - { - bestMergeVal = v; - bestPa = j; - bestPb = k; - bestEa = ea; - bestEb = eb; - } - } - } - - if (bestMergeVal > 0) - { - // Found best, merge. - unsigned short* pa = &polys[bestPa*nvp]; - unsigned short* pb = &polys[bestPb*nvp]; - mergePolyVerts(pa, pb, bestEa, bestEb, tmpPoly, nvp); - unsigned short* lastPoly = &polys[(npolys-1)*nvp]; - if (pb != lastPoly) - memcpy(pb, lastPoly, sizeof(unsigned short)*nvp); - npolys--; - } - else - { - // Could not merge any polygons, stop. - break; - } - } - } - - // Store polygons. - for (int j = 0; j < npolys; ++j) - { - unsigned short* p = &mesh.polys[mesh.npolys*nvp*2]; - unsigned short* q = &polys[j*nvp]; - for (int k = 0; k < nvp; ++k) - p[k] = q[k]; - mesh.regs[mesh.npolys] = cont.reg; - mesh.areas[mesh.npolys] = cont.area; - mesh.npolys++; - if (mesh.npolys > maxTris) - { - ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Too many polygons %d (max:%d).", mesh.npolys, maxTris); - return false; - } - } - } - - - // Remove edge vertices. - for (int i = 0; i < mesh.nverts; ++i) - { - if (vflags[i]) - { - if (!canRemoveVertex(ctx, mesh, (unsigned short)i)) - continue; - if (!removeVertex(ctx, mesh, (unsigned short)i, maxTris)) - { - // Failed to remove vertex - ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Failed to remove edge vertex %d.", i); - return false; - } - // Remove vertex - // Note: mesh.nverts is already decremented inside removeVertex()! - // Fixup vertex flags - for (int j = i; j < mesh.nverts; ++j) - vflags[j] = vflags[j+1]; - --i; - } - } - - // Calculate adjacency. - if (!buildMeshAdjacency(mesh.polys, mesh.npolys, mesh.nverts, nvp)) - { - ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Adjacency failed."); - return false; - } - - // Find portal edges - if (mesh.borderSize > 0) - { - const int w = cset.width; - const int h = cset.height; - for (int i = 0; i < mesh.npolys; ++i) - { - unsigned short* p = &mesh.polys[i*2*nvp]; - for (int j = 0; j < nvp; ++j) - { - if (p[j] == RC_MESH_NULL_IDX) break; - // Skip connected edges. - if (p[nvp+j] != RC_MESH_NULL_IDX) - continue; - int nj = j+1; - if (nj >= nvp || p[nj] == RC_MESH_NULL_IDX) nj = 0; - const unsigned short* va = &mesh.verts[p[j]*3]; - const unsigned short* vb = &mesh.verts[p[nj]*3]; - - if ((int)va[0] == 0 && (int)vb[0] == 0) - p[nvp+j] = 0x8000 | 0; - else if ((int)va[2] == h && (int)vb[2] == h) - p[nvp+j] = 0x8000 | 1; - else if ((int)va[0] == w && (int)vb[0] == w) - p[nvp+j] = 0x8000 | 2; - else if ((int)va[2] == 0 && (int)vb[2] == 0) - p[nvp+j] = 0x8000 | 3; - } - } - } - - // Just allocate the mesh flags array. The user is resposible to fill it. - mesh.flags = (unsigned short*)rcAlloc(sizeof(unsigned short)*mesh.npolys, RC_ALLOC_PERM); - if (!mesh.flags) - { - ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.flags' (%d).", mesh.npolys); - return false; - } - memset(mesh.flags, 0, sizeof(unsigned short) * mesh.npolys); - - if (mesh.nverts > 0xffff) - { - ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: The resulting mesh has too many vertices %d (max %d). Data can be corrupted.", mesh.nverts, 0xffff); - } - if (mesh.npolys > 0xffff) - { - ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: The resulting mesh has too many polygons %d (max %d). Data can be corrupted.", mesh.npolys, 0xffff); - } - - return true; -} - -/// @see rcAllocPolyMesh, rcPolyMesh -bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh) -{ - rcAssert(ctx); - - if (!nmeshes || !meshes) - return true; - - rcScopedTimer timer(ctx, RC_TIMER_MERGE_POLYMESH); - - mesh.nvp = meshes[0]->nvp; - mesh.cs = meshes[0]->cs; - mesh.ch = meshes[0]->ch; - rcVcopy(mesh.bmin, meshes[0]->bmin); - rcVcopy(mesh.bmax, meshes[0]->bmax); - - int maxVerts = 0; - int maxPolys = 0; - int maxVertsPerMesh = 0; - for (int i = 0; i < nmeshes; ++i) - { - rcVmin(mesh.bmin, meshes[i]->bmin); - rcVmax(mesh.bmax, meshes[i]->bmax); - maxVertsPerMesh = rcMax(maxVertsPerMesh, meshes[i]->nverts); - maxVerts += meshes[i]->nverts; - maxPolys += meshes[i]->npolys; - } - - mesh.nverts = 0; - mesh.verts = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxVerts*3, RC_ALLOC_PERM); - if (!mesh.verts) - { - ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.verts' (%d).", maxVerts*3); - return false; - } - - mesh.npolys = 0; - mesh.polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxPolys*2*mesh.nvp, RC_ALLOC_PERM); - if (!mesh.polys) - { - ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.polys' (%d).", maxPolys*2*mesh.nvp); - return false; - } - memset(mesh.polys, 0xff, sizeof(unsigned short)*maxPolys*2*mesh.nvp); - - mesh.regs = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxPolys, RC_ALLOC_PERM); - if (!mesh.regs) - { - ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.regs' (%d).", maxPolys); - return false; - } - memset(mesh.regs, 0, sizeof(unsigned short)*maxPolys); - - mesh.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxPolys, RC_ALLOC_PERM); - if (!mesh.areas) - { - ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.areas' (%d).", maxPolys); - return false; - } - memset(mesh.areas, 0, sizeof(unsigned char)*maxPolys); - - mesh.flags = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxPolys, RC_ALLOC_PERM); - if (!mesh.flags) - { - ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'mesh.flags' (%d).", maxPolys); - return false; - } - memset(mesh.flags, 0, sizeof(unsigned short)*maxPolys); - - rcScopedDelete nextVert((int*)rcAlloc(sizeof(int)*maxVerts, RC_ALLOC_TEMP)); - if (!nextVert) - { - ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'nextVert' (%d).", maxVerts); - return false; - } - memset(nextVert, 0, sizeof(int)*maxVerts); - - rcScopedDelete firstVert((int*)rcAlloc(sizeof(int)*VERTEX_BUCKET_COUNT, RC_ALLOC_TEMP)); - if (!firstVert) - { - ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'firstVert' (%d).", VERTEX_BUCKET_COUNT); - return false; - } - for (int i = 0; i < VERTEX_BUCKET_COUNT; ++i) - firstVert[i] = -1; - - rcScopedDelete vremap((unsigned short*)rcAlloc(sizeof(unsigned short)*maxVertsPerMesh, RC_ALLOC_PERM)); - if (!vremap) - { - ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'vremap' (%d).", maxVertsPerMesh); - return false; - } - memset(vremap, 0, sizeof(unsigned short)*maxVertsPerMesh); - - for (int i = 0; i < nmeshes; ++i) - { - const rcPolyMesh* pmesh = meshes[i]; - - const unsigned short ox = (unsigned short)floorf((pmesh->bmin[0]-mesh.bmin[0])/mesh.cs+0.5f); - const unsigned short oz = (unsigned short)floorf((pmesh->bmin[2]-mesh.bmin[2])/mesh.cs+0.5f); - - bool isMinX = (ox == 0); - bool isMinZ = (oz == 0); - bool isMaxX = ((unsigned short)floorf((mesh.bmax[0] - pmesh->bmax[0]) / mesh.cs + 0.5f)) == 0; - bool isMaxZ = ((unsigned short)floorf((mesh.bmax[2] - pmesh->bmax[2]) / mesh.cs + 0.5f)) == 0; - bool isOnBorder = (isMinX || isMinZ || isMaxX || isMaxZ); - - for (int j = 0; j < pmesh->nverts; ++j) - { - unsigned short* v = &pmesh->verts[j*3]; - vremap[j] = addVertex(v[0]+ox, v[1], v[2]+oz, - mesh.verts, firstVert, nextVert, mesh.nverts); - } - - for (int j = 0; j < pmesh->npolys; ++j) - { - unsigned short* tgt = &mesh.polys[mesh.npolys*2*mesh.nvp]; - unsigned short* src = &pmesh->polys[j*2*mesh.nvp]; - mesh.regs[mesh.npolys] = pmesh->regs[j]; - mesh.areas[mesh.npolys] = pmesh->areas[j]; - mesh.flags[mesh.npolys] = pmesh->flags[j]; - mesh.npolys++; - for (int k = 0; k < mesh.nvp; ++k) - { - if (src[k] == RC_MESH_NULL_IDX) break; - tgt[k] = vremap[src[k]]; - } - - if (isOnBorder) - { - for (int k = mesh.nvp; k < mesh.nvp * 2; ++k) - { - if (src[k] & 0x8000 && src[k] != 0xffff) - { - unsigned short dir = src[k] & 0xf; - switch (dir) - { - case 0: // Portal x- - if (isMinX) - tgt[k] = src[k]; - break; - case 1: // Portal z+ - if (isMaxZ) - tgt[k] = src[k]; - break; - case 2: // Portal x+ - if (isMaxX) - tgt[k] = src[k]; - break; - case 3: // Portal z- - if (isMinZ) - tgt[k] = src[k]; - break; - } - } - } - } - } - } - - // Calculate adjacency. - if (!buildMeshAdjacency(mesh.polys, mesh.npolys, mesh.nverts, mesh.nvp)) - { - ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Adjacency failed."); - return false; - } - - if (mesh.nverts > 0xffff) - { - ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: The resulting mesh has too many vertices %d (max %d). Data can be corrupted.", mesh.nverts, 0xffff); - } - if (mesh.npolys > 0xffff) - { - ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: The resulting mesh has too many polygons %d (max %d). Data can be corrupted.", mesh.npolys, 0xffff); - } - - return true; -} - -bool rcCopyPolyMesh(rcContext* ctx, const rcPolyMesh& src, rcPolyMesh& dst) -{ - rcAssert(ctx); - - // Destination must be empty. - rcAssert(dst.verts == 0); - rcAssert(dst.polys == 0); - rcAssert(dst.regs == 0); - rcAssert(dst.areas == 0); - rcAssert(dst.flags == 0); - - dst.nverts = src.nverts; - dst.npolys = src.npolys; - dst.maxpolys = src.npolys; - dst.nvp = src.nvp; - rcVcopy(dst.bmin, src.bmin); - rcVcopy(dst.bmax, src.bmax); - dst.cs = src.cs; - dst.ch = src.ch; - dst.borderSize = src.borderSize; - dst.maxEdgeError = src.maxEdgeError; - - dst.verts = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.nverts*3, RC_ALLOC_PERM); - if (!dst.verts) - { - ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.verts' (%d).", src.nverts*3); - return false; - } - memcpy(dst.verts, src.verts, sizeof(unsigned short)*src.nverts*3); - - dst.polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.npolys*2*src.nvp, RC_ALLOC_PERM); - if (!dst.polys) - { - ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.polys' (%d).", src.npolys*2*src.nvp); - return false; - } - memcpy(dst.polys, src.polys, sizeof(unsigned short)*src.npolys*2*src.nvp); - - dst.regs = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.npolys, RC_ALLOC_PERM); - if (!dst.regs) - { - ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.regs' (%d).", src.npolys); - return false; - } - memcpy(dst.regs, src.regs, sizeof(unsigned short)*src.npolys); - - dst.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*src.npolys, RC_ALLOC_PERM); - if (!dst.areas) - { - ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.areas' (%d).", src.npolys); - return false; - } - memcpy(dst.areas, src.areas, sizeof(unsigned char)*src.npolys); - - dst.flags = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.npolys, RC_ALLOC_PERM); - if (!dst.flags) - { - ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.flags' (%d).", src.npolys); - return false; - } - memcpy(dst.flags, src.flags, sizeof(unsigned short)*src.npolys); - - return true; -} diff --git a/recastnavigation/Recast/Source/RecastMeshDetail.cpp b/recastnavigation/Recast/Source/RecastMeshDetail.cpp deleted file mode 100644 index 9a423ca..0000000 --- a/recastnavigation/Recast/Source/RecastMeshDetail.cpp +++ /dev/null @@ -1,1464 +0,0 @@ -// -// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org -// -// This software is provided 'as-is', without any express or implied -// warranty. In no event will the authors be held liable for any damages -// arising from the use of this software. -// Permission is granted to anyone to use this software for any purpose, -// including commercial applications, and to alter it and redistribute it -// freely, subject to the following restrictions: -// 1. The origin of this software must not be misrepresented; you must not -// claim that you wrote the original software. If you use this software -// in a product, an acknowledgment in the product documentation would be -// appreciated but is not required. -// 2. Altered source versions must be plainly marked as such, and must not be -// misrepresented as being the original software. -// 3. This notice may not be removed or altered from any source distribution. -// - -#include -#define _USE_MATH_DEFINES -#include -#include -#include -#include -#include "Recast.h" -#include "RecastAlloc.h" -#include "RecastAssert.h" - - -static const unsigned RC_UNSET_HEIGHT = 0xffff; - -struct rcHeightPatch -{ - inline rcHeightPatch() : data(0), xmin(0), ymin(0), width(0), height(0) {} - inline ~rcHeightPatch() { rcFree(data); } - unsigned short* data; - int xmin, ymin, width, height; -}; - - -inline float vdot2(const float* a, const float* b) -{ - return a[0]*b[0] + a[2]*b[2]; -} - -inline float vdistSq2(const float* p, const float* q) -{ - const float dx = q[0] - p[0]; - const float dy = q[2] - p[2]; - return dx*dx + dy*dy; -} - -inline float vdist2(const float* p, const float* q) -{ - return sqrtf(vdistSq2(p,q)); -} - -inline float vcross2(const float* p1, const float* p2, const float* p3) -{ - const float u1 = p2[0] - p1[0]; - const float v1 = p2[2] - p1[2]; - const float u2 = p3[0] - p1[0]; - const float v2 = p3[2] - p1[2]; - return u1 * v2 - v1 * u2; -} - -static bool circumCircle(const float* p1, const float* p2, const float* p3, - float* c, float& r) -{ - static const float EPS = 1e-6f; - // Calculate the circle relative to p1, to avoid some precision issues. - const float v1[3] = {0,0,0}; - float v2[3], v3[3]; - rcVsub(v2, p2,p1); - rcVsub(v3, p3,p1); - - const float cp = vcross2(v1, v2, v3); - if (fabsf(cp) > EPS) - { - const float v1Sq = vdot2(v1,v1); - const float v2Sq = vdot2(v2,v2); - const float v3Sq = vdot2(v3,v3); - c[0] = (v1Sq*(v2[2]-v3[2]) + v2Sq*(v3[2]-v1[2]) + v3Sq*(v1[2]-v2[2])) / (2*cp); - c[1] = 0; - c[2] = (v1Sq*(v3[0]-v2[0]) + v2Sq*(v1[0]-v3[0]) + v3Sq*(v2[0]-v1[0])) / (2*cp); - r = vdist2(c, v1); - rcVadd(c, c, p1); - return true; - } - - rcVcopy(c, p1); - r = 0; - return false; -} - -static float distPtTri(const float* p, const float* a, const float* b, const float* c) -{ - float v0[3], v1[3], v2[3]; - rcVsub(v0, c,a); - rcVsub(v1, b,a); - rcVsub(v2, p,a); - - const float dot00 = vdot2(v0, v0); - const float dot01 = vdot2(v0, v1); - const float dot02 = vdot2(v0, v2); - const float dot11 = vdot2(v1, v1); - const float dot12 = vdot2(v1, v2); - - // Compute barycentric coordinates - const float invDenom = 1.0f / (dot00 * dot11 - dot01 * dot01); - const float u = (dot11 * dot02 - dot01 * dot12) * invDenom; - float v = (dot00 * dot12 - dot01 * dot02) * invDenom; - - // If point lies inside the triangle, return interpolated y-coord. - static const float EPS = 1e-4f; - if (u >= -EPS && v >= -EPS && (u+v) <= 1+EPS) - { - const float y = a[1] + v0[1]*u + v1[1]*v; - return fabsf(y-p[1]); - } - return FLT_MAX; -} - -static float distancePtSeg(const float* pt, const float* p, const float* q) -{ - float pqx = q[0] - p[0]; - float pqy = q[1] - p[1]; - float pqz = q[2] - p[2]; - float dx = pt[0] - p[0]; - float dy = pt[1] - p[1]; - float dz = pt[2] - p[2]; - float d = pqx*pqx + pqy*pqy + pqz*pqz; - float t = pqx*dx + pqy*dy + pqz*dz; - if (d > 0) - t /= d; - if (t < 0) - t = 0; - else if (t > 1) - t = 1; - - dx = p[0] + t*pqx - pt[0]; - dy = p[1] + t*pqy - pt[1]; - dz = p[2] + t*pqz - pt[2]; - - return dx*dx + dy*dy + dz*dz; -} - -static float distancePtSeg2d(const float* pt, const float* p, const float* q) -{ - float pqx = q[0] - p[0]; - float pqz = q[2] - p[2]; - float dx = pt[0] - p[0]; - float dz = pt[2] - p[2]; - float d = pqx*pqx + pqz*pqz; - float t = pqx*dx + pqz*dz; - if (d > 0) - t /= d; - if (t < 0) - t = 0; - else if (t > 1) - t = 1; - - dx = p[0] + t*pqx - pt[0]; - dz = p[2] + t*pqz - pt[2]; - - return dx*dx + dz*dz; -} - -static float distToTriMesh(const float* p, const float* verts, const int /*nverts*/, const int* tris, const int ntris) -{ - float dmin = FLT_MAX; - for (int i = 0; i < ntris; ++i) - { - const float* va = &verts[tris[i*4+0]*3]; - const float* vb = &verts[tris[i*4+1]*3]; - const float* vc = &verts[tris[i*4+2]*3]; - float d = distPtTri(p, va,vb,vc); - if (d < dmin) - dmin = d; - } - if (dmin == FLT_MAX) return -1; - return dmin; -} - -static float distToPoly(int nvert, const float* verts, const float* p) -{ - - float dmin = FLT_MAX; - int i, j, c = 0; - for (i = 0, j = nvert-1; i < nvert; j = i++) - { - const float* vi = &verts[i*3]; - const float* vj = &verts[j*3]; - if (((vi[2] > p[2]) != (vj[2] > p[2])) && - (p[0] < (vj[0]-vi[0]) * (p[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) ) - c = !c; - dmin = rcMin(dmin, distancePtSeg2d(p, vj, vi)); - } - return c ? -dmin : dmin; -} - - -static unsigned short getHeight(const float fx, const float fy, const float fz, - const float /*cs*/, const float ics, const float ch, - const int radius, const rcHeightPatch& hp) -{ - int ix = (int)floorf(fx*ics + 0.01f); - int iz = (int)floorf(fz*ics + 0.01f); - ix = rcClamp(ix-hp.xmin, 0, hp.width - 1); - iz = rcClamp(iz-hp.ymin, 0, hp.height - 1); - unsigned short h = hp.data[ix+iz*hp.width]; - if (h == RC_UNSET_HEIGHT) - { - // Special case when data might be bad. - // Walk adjacent cells in a spiral up to 'radius', and look - // for a pixel which has a valid height. - int x = 1, z = 0, dx = 1, dz = 0; - int maxSize = radius * 2 + 1; - int maxIter = maxSize * maxSize - 1; - - int nextRingIterStart = 8; - int nextRingIters = 16; - - float dmin = FLT_MAX; - for (int i = 0; i < maxIter; i++) - { - const int nx = ix + x; - const int nz = iz + z; - - if (nx >= 0 && nz >= 0 && nx < hp.width && nz < hp.height) - { - const unsigned short nh = hp.data[nx + nz*hp.width]; - if (nh != RC_UNSET_HEIGHT) - { - const float d = fabsf(nh*ch - fy); - if (d < dmin) - { - h = nh; - dmin = d; - } - } - } - - // We are searching in a grid which looks approximately like this: - // __________ - // |2 ______ 2| - // | |1 __ 1| | - // | | |__| | | - // | |______| | - // |__________| - // We want to find the best height as close to the center cell as possible. This means that - // if we find a height in one of the neighbor cells to the center, we don't want to - // expand further out than the 8 neighbors - we want to limit our search to the closest - // of these "rings", but the best height in the ring. - // For example, the center is just 1 cell. We checked that at the entrance to the function. - // The next "ring" contains 8 cells (marked 1 above). Those are all the neighbors to the center cell. - // The next one again contains 16 cells (marked 2). In general each ring has 8 additional cells, which - // can be thought of as adding 2 cells around the "center" of each side when we expand the ring. - // Here we detect if we are about to enter the next ring, and if we are and we have found - // a height, we abort the search. - if (i + 1 == nextRingIterStart) - { - if (h != RC_UNSET_HEIGHT) - break; - - nextRingIterStart += nextRingIters; - nextRingIters += 8; - } - - if ((x == z) || ((x < 0) && (x == -z)) || ((x > 0) && (x == 1 - z))) - { - int tmp = dx; - dx = -dz; - dz = tmp; - } - x += dx; - z += dz; - } - } - return h; -} - - -enum EdgeValues -{ - EV_UNDEF = -1, - EV_HULL = -2, -}; - -static int findEdge(const int* edges, int nedges, int s, int t) -{ - for (int i = 0; i < nedges; i++) - { - const int* e = &edges[i*4]; - if ((e[0] == s && e[1] == t) || (e[0] == t && e[1] == s)) - return i; - } - return EV_UNDEF; -} - -static int addEdge(rcContext* ctx, int* edges, int& nedges, const int maxEdges, int s, int t, int l, int r) -{ - if (nedges >= maxEdges) - { - ctx->log(RC_LOG_ERROR, "addEdge: Too many edges (%d/%d).", nedges, maxEdges); - return EV_UNDEF; - } - - // Add edge if not already in the triangulation. - int e = findEdge(edges, nedges, s, t); - if (e == EV_UNDEF) - { - int* edge = &edges[nedges*4]; - edge[0] = s; - edge[1] = t; - edge[2] = l; - edge[3] = r; - return nedges++; - } - else - { - return EV_UNDEF; - } -} - -static void updateLeftFace(int* e, int s, int t, int f) -{ - if (e[0] == s && e[1] == t && e[2] == EV_UNDEF) - e[2] = f; - else if (e[1] == s && e[0] == t && e[3] == EV_UNDEF) - e[3] = f; -} - -static int overlapSegSeg2d(const float* a, const float* b, const float* c, const float* d) -{ - const float a1 = vcross2(a, b, d); - const float a2 = vcross2(a, b, c); - if (a1*a2 < 0.0f) - { - float a3 = vcross2(c, d, a); - float a4 = a3 + a2 - a1; - if (a3 * a4 < 0.0f) - return 1; - } - return 0; -} - -static bool overlapEdges(const float* pts, const int* edges, int nedges, int s1, int t1) -{ - for (int i = 0; i < nedges; ++i) - { - const int s0 = edges[i*4+0]; - const int t0 = edges[i*4+1]; - // Same or connected edges do not overlap. - if (s0 == s1 || s0 == t1 || t0 == s1 || t0 == t1) - continue; - if (overlapSegSeg2d(&pts[s0*3],&pts[t0*3], &pts[s1*3],&pts[t1*3])) - return true; - } - return false; -} - -static void completeFacet(rcContext* ctx, const float* pts, int npts, int* edges, int& nedges, const int maxEdges, int& nfaces, int e) -{ - static const float EPS = 1e-5f; - - int* edge = &edges[e*4]; - - // Cache s and t. - int s,t; - if (edge[2] == EV_UNDEF) - { - s = edge[0]; - t = edge[1]; - } - else if (edge[3] == EV_UNDEF) - { - s = edge[1]; - t = edge[0]; - } - else - { - // Edge already completed. - return; - } - - // Find best point on left of edge. - int pt = npts; - float c[3] = {0,0,0}; - float r = -1; - for (int u = 0; u < npts; ++u) - { - if (u == s || u == t) continue; - if (vcross2(&pts[s*3], &pts[t*3], &pts[u*3]) > EPS) - { - if (r < 0) - { - // The circle is not updated yet, do it now. - pt = u; - circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r); - continue; - } - const float d = vdist2(c, &pts[u*3]); - const float tol = 0.001f; - if (d > r*(1+tol)) - { - // Outside current circumcircle, skip. - continue; - } - else if (d < r*(1-tol)) - { - // Inside safe circumcircle, update circle. - pt = u; - circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r); - } - else - { - // Inside epsilon circum circle, do extra tests to make sure the edge is valid. - // s-u and t-u cannot overlap with s-pt nor t-pt if they exists. - if (overlapEdges(pts, edges, nedges, s,u)) - continue; - if (overlapEdges(pts, edges, nedges, t,u)) - continue; - // Edge is valid. - pt = u; - circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r); - } - } - } - - // Add new triangle or update edge info if s-t is on hull. - if (pt < npts) - { - // Update face information of edge being completed. - updateLeftFace(&edges[e*4], s, t, nfaces); - - // Add new edge or update face info of old edge. - e = findEdge(edges, nedges, pt, s); - if (e == EV_UNDEF) - addEdge(ctx, edges, nedges, maxEdges, pt, s, nfaces, EV_UNDEF); - else - updateLeftFace(&edges[e*4], pt, s, nfaces); - - // Add new edge or update face info of old edge. - e = findEdge(edges, nedges, t, pt); - if (e == EV_UNDEF) - addEdge(ctx, edges, nedges, maxEdges, t, pt, nfaces, EV_UNDEF); - else - updateLeftFace(&edges[e*4], t, pt, nfaces); - - nfaces++; - } - else - { - updateLeftFace(&edges[e*4], s, t, EV_HULL); - } -} - -static void delaunayHull(rcContext* ctx, const int npts, const float* pts, - const int nhull, const int* hull, - rcIntArray& tris, rcIntArray& edges) -{ - int nfaces = 0; - int nedges = 0; - const int maxEdges = npts*10; - edges.resize(maxEdges*4); - - for (int i = 0, j = nhull-1; i < nhull; j=i++) - addEdge(ctx, &edges[0], nedges, maxEdges, hull[j],hull[i], EV_HULL, EV_UNDEF); - - int currentEdge = 0; - while (currentEdge < nedges) - { - if (edges[currentEdge*4+2] == EV_UNDEF) - completeFacet(ctx, pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge); - if (edges[currentEdge*4+3] == EV_UNDEF) - completeFacet(ctx, pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge); - currentEdge++; - } - - // Create tris - tris.resize(nfaces*4); - for (int i = 0; i < nfaces*4; ++i) - tris[i] = -1; - - for (int i = 0; i < nedges; ++i) - { - const int* e = &edges[i*4]; - if (e[3] >= 0) - { - // Left face - int* t = &tris[e[3]*4]; - if (t[0] == -1) - { - t[0] = e[0]; - t[1] = e[1]; - } - else if (t[0] == e[1]) - t[2] = e[0]; - else if (t[1] == e[0]) - t[2] = e[1]; - } - if (e[2] >= 0) - { - // Right - int* t = &tris[e[2]*4]; - if (t[0] == -1) - { - t[0] = e[1]; - t[1] = e[0]; - } - else if (t[0] == e[0]) - t[2] = e[1]; - else if (t[1] == e[1]) - t[2] = e[0]; - } - } - - for (int i = 0; i < tris.size()/4; ++i) - { - int* t = &tris[i*4]; - if (t[0] == -1 || t[1] == -1 || t[2] == -1) - { - ctx->log(RC_LOG_WARNING, "delaunayHull: Removing dangling face %d [%d,%d,%d].", i, t[0],t[1],t[2]); - t[0] = tris[tris.size()-4]; - t[1] = tris[tris.size()-3]; - t[2] = tris[tris.size()-2]; - t[3] = tris[tris.size()-1]; - tris.resize(tris.size()-4); - --i; - } - } -} - -// Calculate minimum extend of the polygon. -static float polyMinExtent(const float* verts, const int nverts) -{ - float minDist = FLT_MAX; - for (int i = 0; i < nverts; i++) - { - const int ni = (i+1) % nverts; - const float* p1 = &verts[i*3]; - const float* p2 = &verts[ni*3]; - float maxEdgeDist = 0; - for (int j = 0; j < nverts; j++) - { - if (j == i || j == ni) continue; - float d = distancePtSeg2d(&verts[j*3], p1,p2); - maxEdgeDist = rcMax(maxEdgeDist, d); - } - minDist = rcMin(minDist, maxEdgeDist); - } - return rcSqrt(minDist); -} - -// Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv). -inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; } -inline int next(int i, int n) { return i+1 < n ? i+1 : 0; } - -static void triangulateHull(const int /*nverts*/, const float* verts, const int nhull, const int* hull, const int nin, rcIntArray& tris) -{ - int start = 0, left = 1, right = nhull-1; - - // Start from an ear with shortest perimeter. - // This tends to favor well formed triangles as starting point. - float dmin = FLT_MAX; - for (int i = 0; i < nhull; i++) - { - if (hull[i] >= nin) continue; // Ears are triangles with original vertices as middle vertex while others are actually line segments on edges - int pi = prev(i, nhull); - int ni = next(i, nhull); - const float* pv = &verts[hull[pi]*3]; - const float* cv = &verts[hull[i]*3]; - const float* nv = &verts[hull[ni]*3]; - const float d = vdist2(pv,cv) + vdist2(cv,nv) + vdist2(nv,pv); - if (d < dmin) - { - start = i; - left = ni; - right = pi; - dmin = d; - } - } - - // Add first triangle - tris.push(hull[start]); - tris.push(hull[left]); - tris.push(hull[right]); - tris.push(0); - - // Triangulate the polygon by moving left or right, - // depending on which triangle has shorter perimeter. - // This heuristic was chose emprically, since it seems - // handle tesselated straight edges well. - while (next(left, nhull) != right) - { - // Check to see if se should advance left or right. - int nleft = next(left, nhull); - int nright = prev(right, nhull); - - const float* cvleft = &verts[hull[left]*3]; - const float* nvleft = &verts[hull[nleft]*3]; - const float* cvright = &verts[hull[right]*3]; - const float* nvright = &verts[hull[nright]*3]; - const float dleft = vdist2(cvleft, nvleft) + vdist2(nvleft, cvright); - const float dright = vdist2(cvright, nvright) + vdist2(cvleft, nvright); - - if (dleft < dright) - { - tris.push(hull[left]); - tris.push(hull[nleft]); - tris.push(hull[right]); - tris.push(0); - left = nleft; - } - else - { - tris.push(hull[left]); - tris.push(hull[nright]); - tris.push(hull[right]); - tris.push(0); - right = nright; - } - } -} - - -inline float getJitterX(const int i) -{ - return (((i * 0x8da6b343) & 0xffff) / 65535.0f * 2.0f) - 1.0f; -} - -inline float getJitterY(const int i) -{ - return (((i * 0xd8163841) & 0xffff) / 65535.0f * 2.0f) - 1.0f; -} - -static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin, - const float sampleDist, const float sampleMaxError, - const int heightSearchRadius, const rcCompactHeightfield& chf, - const rcHeightPatch& hp, float* verts, int& nverts, - rcIntArray& tris, rcIntArray& edges, rcIntArray& samples) -{ - static const int MAX_VERTS = 127; - static const int MAX_TRIS = 255; // Max tris for delaunay is 2n-2-k (n=num verts, k=num hull verts). - static const int MAX_VERTS_PER_EDGE = 32; - float edge[(MAX_VERTS_PER_EDGE+1)*3]; - int hull[MAX_VERTS]; - int nhull = 0; - - nverts = nin; - - for (int i = 0; i < nin; ++i) - rcVcopy(&verts[i*3], &in[i*3]); - - edges.resize(0); - tris.resize(0); - - const float cs = chf.cs; - const float ics = 1.0f/cs; - - // Calculate minimum extents of the polygon based on input data. - float minExtent = polyMinExtent(verts, nverts); - - // Tessellate outlines. - // This is done in separate pass in order to ensure - // seamless height values across the ply boundaries. - if (sampleDist > 0) - { - for (int i = 0, j = nin-1; i < nin; j=i++) - { - const float* vj = &in[j*3]; - const float* vi = &in[i*3]; - bool swapped = false; - // Make sure the segments are always handled in same order - // using lexological sort or else there will be seams. - if (fabsf(vj[0]-vi[0]) < 1e-6f) - { - if (vj[2] > vi[2]) - { - rcSwap(vj,vi); - swapped = true; - } - } - else - { - if (vj[0] > vi[0]) - { - rcSwap(vj,vi); - swapped = true; - } - } - // Create samples along the edge. - float dx = vi[0] - vj[0]; - float dy = vi[1] - vj[1]; - float dz = vi[2] - vj[2]; - float d = sqrtf(dx*dx + dz*dz); - int nn = 1 + (int)floorf(d/sampleDist); - if (nn >= MAX_VERTS_PER_EDGE) nn = MAX_VERTS_PER_EDGE-1; - if (nverts+nn >= MAX_VERTS) - nn = MAX_VERTS-1-nverts; - - for (int k = 0; k <= nn; ++k) - { - float u = (float)k/(float)nn; - float* pos = &edge[k*3]; - pos[0] = vj[0] + dx*u; - pos[1] = vj[1] + dy*u; - pos[2] = vj[2] + dz*u; - pos[1] = getHeight(pos[0],pos[1],pos[2], cs, ics, chf.ch, heightSearchRadius, hp)*chf.ch; - } - // Simplify samples. - int idx[MAX_VERTS_PER_EDGE] = {0,nn}; - int nidx = 2; - for (int k = 0; k < nidx-1; ) - { - const int a = idx[k]; - const int b = idx[k+1]; - const float* va = &edge[a*3]; - const float* vb = &edge[b*3]; - // Find maximum deviation along the segment. - float maxd = 0; - int maxi = -1; - for (int m = a+1; m < b; ++m) - { - float dev = distancePtSeg(&edge[m*3],va,vb); - if (dev > maxd) - { - maxd = dev; - maxi = m; - } - } - // If the max deviation is larger than accepted error, - // add new point, else continue to next segment. - if (maxi != -1 && maxd > rcSqr(sampleMaxError)) - { - for (int m = nidx; m > k; --m) - idx[m] = idx[m-1]; - idx[k+1] = maxi; - nidx++; - } - else - { - ++k; - } - } - - hull[nhull++] = j; - // Add new vertices. - if (swapped) - { - for (int k = nidx-2; k > 0; --k) - { - rcVcopy(&verts[nverts*3], &edge[idx[k]*3]); - hull[nhull++] = nverts; - nverts++; - } - } - else - { - for (int k = 1; k < nidx-1; ++k) - { - rcVcopy(&verts[nverts*3], &edge[idx[k]*3]); - hull[nhull++] = nverts; - nverts++; - } - } - } - } - - // If the polygon minimum extent is small (sliver or small triangle), do not try to add internal points. - if (minExtent < sampleDist*2) - { - triangulateHull(nverts, verts, nhull, hull, nin, tris); - return true; - } - - // Tessellate the base mesh. - // We're using the triangulateHull instead of delaunayHull as it tends to - // create a bit better triangulation for long thin triangles when there - // are no internal points. - triangulateHull(nverts, verts, nhull, hull, nin, tris); - - if (tris.size() == 0) - { - // Could not triangulate the poly, make sure there is some valid data there. - ctx->log(RC_LOG_WARNING, "buildPolyDetail: Could not triangulate polygon (%d verts).", nverts); - return true; - } - - if (sampleDist > 0) - { - // Create sample locations in a grid. - float bmin[3], bmax[3]; - rcVcopy(bmin, in); - rcVcopy(bmax, in); - for (int i = 1; i < nin; ++i) - { - rcVmin(bmin, &in[i*3]); - rcVmax(bmax, &in[i*3]); - } - int x0 = (int)floorf(bmin[0]/sampleDist); - int x1 = (int)ceilf(bmax[0]/sampleDist); - int z0 = (int)floorf(bmin[2]/sampleDist); - int z1 = (int)ceilf(bmax[2]/sampleDist); - samples.resize(0); - for (int z = z0; z < z1; ++z) - { - for (int x = x0; x < x1; ++x) - { - float pt[3]; - pt[0] = x*sampleDist; - pt[1] = (bmax[1]+bmin[1])*0.5f; - pt[2] = z*sampleDist; - // Make sure the samples are not too close to the edges. - if (distToPoly(nin,in,pt) > -sampleDist/2) continue; - samples.push(x); - samples.push(getHeight(pt[0], pt[1], pt[2], cs, ics, chf.ch, heightSearchRadius, hp)); - samples.push(z); - samples.push(0); // Not added - } - } - - // Add the samples starting from the one that has the most - // error. The procedure stops when all samples are added - // or when the max error is within treshold. - const int nsamples = samples.size()/4; - for (int iter = 0; iter < nsamples; ++iter) - { - if (nverts >= MAX_VERTS) - break; - - // Find sample with most error. - float bestpt[3] = {0,0,0}; - float bestd = 0; - int besti = -1; - for (int i = 0; i < nsamples; ++i) - { - const int* s = &samples[i*4]; - if (s[3]) continue; // skip added. - float pt[3]; - // The sample location is jittered to get rid of some bad triangulations - // which are cause by symmetrical data from the grid structure. - pt[0] = s[0]*sampleDist + getJitterX(i)*cs*0.1f; - pt[1] = s[1]*chf.ch; - pt[2] = s[2]*sampleDist + getJitterY(i)*cs*0.1f; - float d = distToTriMesh(pt, verts, nverts, &tris[0], tris.size()/4); - if (d < 0) continue; // did not hit the mesh. - if (d > bestd) - { - bestd = d; - besti = i; - rcVcopy(bestpt,pt); - } - } - // If the max error is within accepted threshold, stop tesselating. - if (bestd <= sampleMaxError || besti == -1) - break; - // Mark sample as added. - samples[besti*4+3] = 1; - // Add the new sample point. - rcVcopy(&verts[nverts*3],bestpt); - nverts++; - - // Create new triangulation. - // TODO: Incremental add instead of full rebuild. - edges.resize(0); - tris.resize(0); - delaunayHull(ctx, nverts, verts, nhull, hull, tris, edges); - } - } - - const int ntris = tris.size()/4; - if (ntris > MAX_TRIS) - { - tris.resize(MAX_TRIS*4); - ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Shrinking triangle count from %d to max %d.", ntris, MAX_TRIS); - } - - return true; -} - -static void seedArrayWithPolyCenter(rcContext* ctx, const rcCompactHeightfield& chf, - const unsigned short* poly, const int npoly, - const unsigned short* verts, const int bs, - rcHeightPatch& hp, rcIntArray& array) -{ - // Note: Reads to the compact heightfield are offset by border size (bs) - // since border size offset is already removed from the polymesh vertices. - - static const int offset[9*2] = - { - 0,0, -1,-1, 0,-1, 1,-1, 1,0, 1,1, 0,1, -1,1, -1,0, - }; - - // Find cell closest to a poly vertex - int startCellX = 0, startCellY = 0, startSpanIndex = -1; - int dmin = RC_UNSET_HEIGHT; - for (int j = 0; j < npoly && dmin > 0; ++j) - { - for (int k = 0; k < 9 && dmin > 0; ++k) - { - const int ax = (int)verts[poly[j]*3+0] + offset[k*2+0]; - const int ay = (int)verts[poly[j]*3+1]; - const int az = (int)verts[poly[j]*3+2] + offset[k*2+1]; - if (ax < hp.xmin || ax >= hp.xmin+hp.width || - az < hp.ymin || az >= hp.ymin+hp.height) - continue; - - const rcCompactCell& c = chf.cells[(ax+bs)+(az+bs)*chf.width]; - for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni && dmin > 0; ++i) - { - const rcCompactSpan& s = chf.spans[i]; - int d = rcAbs(ay - (int)s.y); - if (d < dmin) - { - startCellX = ax; - startCellY = az; - startSpanIndex = i; - dmin = d; - } - } - } - } - - rcAssert(startSpanIndex != -1); - // Find center of the polygon - int pcx = 0, pcy = 0; - for (int j = 0; j < npoly; ++j) - { - pcx += (int)verts[poly[j]*3+0]; - pcy += (int)verts[poly[j]*3+2]; - } - pcx /= npoly; - pcy /= npoly; - - // Use seeds array as a stack for DFS - array.resize(0); - array.push(startCellX); - array.push(startCellY); - array.push(startSpanIndex); - - int dirs[] = { 0, 1, 2, 3 }; - memset(hp.data, 0, sizeof(unsigned short)*hp.width*hp.height); - // DFS to move to the center. Note that we need a DFS here and can not just move - // directly towards the center without recording intermediate nodes, even though the polygons - // are convex. In very rare we can get stuck due to contour simplification if we do not - // record nodes. - int cx = -1, cy = -1, ci = -1; - while (true) - { - if (array.size() < 3) - { - ctx->log(RC_LOG_WARNING, "Walk towards polygon center failed to reach center"); - break; - } - - ci = array.pop(); - cy = array.pop(); - cx = array.pop(); - - if (cx == pcx && cy == pcy) - break; - - // If we are already at the correct X-position, prefer direction - // directly towards the center in the Y-axis; otherwise prefer - // direction in the X-axis - int directDir; - if (cx == pcx) - directDir = rcGetDirForOffset(0, pcy > cy ? 1 : -1); - else - directDir = rcGetDirForOffset(pcx > cx ? 1 : -1, 0); - - // Push the direct dir last so we start with this on next iteration - rcSwap(dirs[directDir], dirs[3]); - - const rcCompactSpan& cs = chf.spans[ci]; - for (int i = 0; i < 4; i++) - { - int dir = dirs[i]; - if (rcGetCon(cs, dir) == RC_NOT_CONNECTED) - continue; - - int newX = cx + rcGetDirOffsetX(dir); - int newY = cy + rcGetDirOffsetY(dir); - - int hpx = newX - hp.xmin; - int hpy = newY - hp.ymin; - if (hpx < 0 || hpx >= hp.width || hpy < 0 || hpy >= hp.height) - continue; - - if (hp.data[hpx+hpy*hp.width] != 0) - continue; - - hp.data[hpx+hpy*hp.width] = 1; - array.push(newX); - array.push(newY); - array.push((int)chf.cells[(newX+bs)+(newY+bs)*chf.width].index + rcGetCon(cs, dir)); - } - - rcSwap(dirs[directDir], dirs[3]); - } - - array.resize(0); - // getHeightData seeds are given in coordinates with borders - array.push(cx+bs); - array.push(cy+bs); - array.push(ci); - - memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height); - const rcCompactSpan& cs = chf.spans[ci]; - hp.data[cx-hp.xmin+(cy-hp.ymin)*hp.width] = cs.y; -} - - -static void push3(rcIntArray& queue, int v1, int v2, int v3) -{ - queue.resize(queue.size() + 3); - queue[queue.size() - 3] = v1; - queue[queue.size() - 2] = v2; - queue[queue.size() - 1] = v3; -} - -static void getHeightData(rcContext* ctx, const rcCompactHeightfield& chf, - const unsigned short* poly, const int npoly, - const unsigned short* verts, const int bs, - rcHeightPatch& hp, rcIntArray& queue, - int region) -{ - // Note: Reads to the compact heightfield are offset by border size (bs) - // since border size offset is already removed from the polymesh vertices. - - queue.resize(0); - // Set all heights to RC_UNSET_HEIGHT. - memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height); - - bool empty = true; - - // We cannot sample from this poly if it was created from polys - // of different regions. If it was then it could potentially be overlapping - // with polys of that region and the heights sampled here could be wrong. - if (region != RC_MULTIPLE_REGS) - { - // Copy the height from the same region, and mark region borders - // as seed points to fill the rest. - for (int hy = 0; hy < hp.height; hy++) - { - int y = hp.ymin + hy + bs; - for (int hx = 0; hx < hp.width; hx++) - { - int x = hp.xmin + hx + bs; - const rcCompactCell& c = chf.cells[x + y*chf.width]; - for (int i = (int)c.index, ni = (int)(c.index + c.count); i < ni; ++i) - { - const rcCompactSpan& s = chf.spans[i]; - if (s.reg == region) - { - // Store height - hp.data[hx + hy*hp.width] = s.y; - empty = false; - - // If any of the neighbours is not in same region, - // add the current location as flood fill start - bool border = false; - for (int dir = 0; dir < 4; ++dir) - { - if (rcGetCon(s, dir) != RC_NOT_CONNECTED) - { - const int ax = x + rcGetDirOffsetX(dir); - const int ay = y + rcGetDirOffsetY(dir); - const int ai = (int)chf.cells[ax + ay*chf.width].index + rcGetCon(s, dir); - const rcCompactSpan& as = chf.spans[ai]; - if (as.reg != region) - { - border = true; - break; - } - } - } - if (border) - push3(queue, x, y, i); - break; - } - } - } - } - } - - // if the polygon does not contain any points from the current region (rare, but happens) - // or if it could potentially be overlapping polygons of the same region, - // then use the center as the seed point. - if (empty) - seedArrayWithPolyCenter(ctx, chf, poly, npoly, verts, bs, hp, queue); - - static const int RETRACT_SIZE = 256; - int head = 0; - - // We assume the seed is centered in the polygon, so a BFS to collect - // height data will ensure we do not move onto overlapping polygons and - // sample wrong heights. - while (head*3 < queue.size()) - { - int cx = queue[head*3+0]; - int cy = queue[head*3+1]; - int ci = queue[head*3+2]; - head++; - if (head >= RETRACT_SIZE) - { - head = 0; - if (queue.size() > RETRACT_SIZE*3) - memmove(&queue[0], &queue[RETRACT_SIZE*3], sizeof(int)*(queue.size()-RETRACT_SIZE*3)); - queue.resize(queue.size()-RETRACT_SIZE*3); - } - - const rcCompactSpan& cs = chf.spans[ci]; - for (int dir = 0; dir < 4; ++dir) - { - if (rcGetCon(cs, dir) == RC_NOT_CONNECTED) continue; - - const int ax = cx + rcGetDirOffsetX(dir); - const int ay = cy + rcGetDirOffsetY(dir); - const int hx = ax - hp.xmin - bs; - const int hy = ay - hp.ymin - bs; - - if ((unsigned int)hx >= (unsigned int)hp.width || (unsigned int)hy >= (unsigned int)hp.height) - continue; - - if (hp.data[hx + hy*hp.width] != RC_UNSET_HEIGHT) - continue; - - const int ai = (int)chf.cells[ax + ay*chf.width].index + rcGetCon(cs, dir); - const rcCompactSpan& as = chf.spans[ai]; - - hp.data[hx + hy*hp.width] = as.y; - - push3(queue, ax, ay, ai); - } - } -} - -static unsigned char getEdgeFlags(const float* va, const float* vb, - const float* vpoly, const int npoly) -{ - // The flag returned by this function matches dtDetailTriEdgeFlags in Detour. - // Figure out if edge (va,vb) is part of the polygon boundary. - static const float thrSqr = rcSqr(0.001f); - for (int i = 0, j = npoly-1; i < npoly; j=i++) - { - if (distancePtSeg2d(va, &vpoly[j*3], &vpoly[i*3]) < thrSqr && - distancePtSeg2d(vb, &vpoly[j*3], &vpoly[i*3]) < thrSqr) - return 1; - } - return 0; -} - -static unsigned char getTriFlags(const float* va, const float* vb, const float* vc, - const float* vpoly, const int npoly) -{ - unsigned char flags = 0; - flags |= getEdgeFlags(va,vb,vpoly,npoly) << 0; - flags |= getEdgeFlags(vb,vc,vpoly,npoly) << 2; - flags |= getEdgeFlags(vc,va,vpoly,npoly) << 4; - return flags; -} - -/// @par -/// -/// See the #rcConfig documentation for more information on the configuration parameters. -/// -/// @see rcAllocPolyMeshDetail, rcPolyMesh, rcCompactHeightfield, rcPolyMeshDetail, rcConfig -bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf, - const float sampleDist, const float sampleMaxError, - rcPolyMeshDetail& dmesh) -{ - rcAssert(ctx); - - rcScopedTimer timer(ctx, RC_TIMER_BUILD_POLYMESHDETAIL); - - if (mesh.nverts == 0 || mesh.npolys == 0) - return true; - - const int nvp = mesh.nvp; - const float cs = mesh.cs; - const float ch = mesh.ch; - const float* orig = mesh.bmin; - const int borderSize = mesh.borderSize; - const int heightSearchRadius = rcMax(1, (int)ceilf(mesh.maxEdgeError)); - - rcIntArray edges(64); - rcIntArray tris(512); - rcIntArray arr(512); - rcIntArray samples(512); - float verts[256*3]; - rcHeightPatch hp; - int nPolyVerts = 0; - int maxhw = 0, maxhh = 0; - - rcScopedDelete bounds((int*)rcAlloc(sizeof(int)*mesh.npolys*4, RC_ALLOC_TEMP)); - if (!bounds) - { - ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'bounds' (%d).", mesh.npolys*4); - return false; - } - rcScopedDelete poly((float*)rcAlloc(sizeof(float)*nvp*3, RC_ALLOC_TEMP)); - if (!poly) - { - ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'poly' (%d).", nvp*3); - return false; - } - - // Find max size for a polygon area. - for (int i = 0; i < mesh.npolys; ++i) - { - const unsigned short* p = &mesh.polys[i*nvp*2]; - int& xmin = bounds[i*4+0]; - int& xmax = bounds[i*4+1]; - int& ymin = bounds[i*4+2]; - int& ymax = bounds[i*4+3]; - xmin = chf.width; - xmax = 0; - ymin = chf.height; - ymax = 0; - for (int j = 0; j < nvp; ++j) - { - if(p[j] == RC_MESH_NULL_IDX) break; - const unsigned short* v = &mesh.verts[p[j]*3]; - xmin = rcMin(xmin, (int)v[0]); - xmax = rcMax(xmax, (int)v[0]); - ymin = rcMin(ymin, (int)v[2]); - ymax = rcMax(ymax, (int)v[2]); - nPolyVerts++; - } - xmin = rcMax(0,xmin-1); - xmax = rcMin(chf.width,xmax+1); - ymin = rcMax(0,ymin-1); - ymax = rcMin(chf.height,ymax+1); - if (xmin >= xmax || ymin >= ymax) continue; - maxhw = rcMax(maxhw, xmax-xmin); - maxhh = rcMax(maxhh, ymax-ymin); - } - - hp.data = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxhw*maxhh, RC_ALLOC_TEMP); - if (!hp.data) - { - ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'hp.data' (%d).", maxhw*maxhh); - return false; - } - - dmesh.nmeshes = mesh.npolys; - dmesh.nverts = 0; - dmesh.ntris = 0; - dmesh.meshes = (unsigned int*)rcAlloc(sizeof(unsigned int)*dmesh.nmeshes*4, RC_ALLOC_PERM); - if (!dmesh.meshes) - { - ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.meshes' (%d).", dmesh.nmeshes*4); - return false; - } - - int vcap = nPolyVerts+nPolyVerts/2; - int tcap = vcap*2; - - dmesh.nverts = 0; - dmesh.verts = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM); - if (!dmesh.verts) - { - ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d).", vcap*3); - return false; - } - dmesh.ntris = 0; - dmesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*tcap*4, RC_ALLOC_PERM); - if (!dmesh.tris) - { - ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", tcap*4); - return false; - } - - for (int i = 0; i < mesh.npolys; ++i) - { - const unsigned short* p = &mesh.polys[i*nvp*2]; - - // Store polygon vertices for processing. - int npoly = 0; - for (int j = 0; j < nvp; ++j) - { - if(p[j] == RC_MESH_NULL_IDX) break; - const unsigned short* v = &mesh.verts[p[j]*3]; - poly[j*3+0] = v[0]*cs; - poly[j*3+1] = v[1]*ch; - poly[j*3+2] = v[2]*cs; - npoly++; - } - - // Get the height data from the area of the polygon. - hp.xmin = bounds[i*4+0]; - hp.ymin = bounds[i*4+2]; - hp.width = bounds[i*4+1]-bounds[i*4+0]; - hp.height = bounds[i*4+3]-bounds[i*4+2]; - getHeightData(ctx, chf, p, npoly, mesh.verts, borderSize, hp, arr, mesh.regs[i]); - - // Build detail mesh. - int nverts = 0; - if (!buildPolyDetail(ctx, poly, npoly, - sampleDist, sampleMaxError, - heightSearchRadius, chf, hp, - verts, nverts, tris, - edges, samples)) - { - return false; - } - - // Move detail verts to world space. - for (int j = 0; j < nverts; ++j) - { - verts[j*3+0] += orig[0]; - verts[j*3+1] += orig[1] + chf.ch; // Is this offset necessary? - verts[j*3+2] += orig[2]; - } - // Offset poly too, will be used to flag checking. - for (int j = 0; j < npoly; ++j) - { - poly[j*3+0] += orig[0]; - poly[j*3+1] += orig[1]; - poly[j*3+2] += orig[2]; - } - - // Store detail submesh. - const int ntris = tris.size()/4; - - dmesh.meshes[i*4+0] = (unsigned int)dmesh.nverts; - dmesh.meshes[i*4+1] = (unsigned int)nverts; - dmesh.meshes[i*4+2] = (unsigned int)dmesh.ntris; - dmesh.meshes[i*4+3] = (unsigned int)ntris; - - // Store vertices, allocate more memory if necessary. - if (dmesh.nverts+nverts > vcap) - { - while (dmesh.nverts+nverts > vcap) - vcap += 256; - - float* newv = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM); - if (!newv) - { - ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newv' (%d).", vcap*3); - return false; - } - if (dmesh.nverts) - memcpy(newv, dmesh.verts, sizeof(float)*3*dmesh.nverts); - rcFree(dmesh.verts); - dmesh.verts = newv; - } - for (int j = 0; j < nverts; ++j) - { - dmesh.verts[dmesh.nverts*3+0] = verts[j*3+0]; - dmesh.verts[dmesh.nverts*3+1] = verts[j*3+1]; - dmesh.verts[dmesh.nverts*3+2] = verts[j*3+2]; - dmesh.nverts++; - } - - // Store triangles, allocate more memory if necessary. - if (dmesh.ntris+ntris > tcap) - { - while (dmesh.ntris+ntris > tcap) - tcap += 256; - unsigned char* newt = (unsigned char*)rcAlloc(sizeof(unsigned char)*tcap*4, RC_ALLOC_PERM); - if (!newt) - { - ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newt' (%d).", tcap*4); - return false; - } - if (dmesh.ntris) - memcpy(newt, dmesh.tris, sizeof(unsigned char)*4*dmesh.ntris); - rcFree(dmesh.tris); - dmesh.tris = newt; - } - for (int j = 0; j < ntris; ++j) - { - const int* t = &tris[j*4]; - dmesh.tris[dmesh.ntris*4+0] = (unsigned char)t[0]; - dmesh.tris[dmesh.ntris*4+1] = (unsigned char)t[1]; - dmesh.tris[dmesh.ntris*4+2] = (unsigned char)t[2]; - dmesh.tris[dmesh.ntris*4+3] = getTriFlags(&verts[t[0]*3], &verts[t[1]*3], &verts[t[2]*3], poly, npoly); - dmesh.ntris++; - } - } - - return true; -} - -/// @see rcAllocPolyMeshDetail, rcPolyMeshDetail -bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh) -{ - rcAssert(ctx); - - rcScopedTimer timer(ctx, RC_TIMER_MERGE_POLYMESHDETAIL); - - int maxVerts = 0; - int maxTris = 0; - int maxMeshes = 0; - - for (int i = 0; i < nmeshes; ++i) - { - if (!meshes[i]) continue; - maxVerts += meshes[i]->nverts; - maxTris += meshes[i]->ntris; - maxMeshes += meshes[i]->nmeshes; - } - - mesh.nmeshes = 0; - mesh.meshes = (unsigned int*)rcAlloc(sizeof(unsigned int)*maxMeshes*4, RC_ALLOC_PERM); - if (!mesh.meshes) - { - ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'pmdtl.meshes' (%d).", maxMeshes*4); - return false; - } - - mesh.ntris = 0; - mesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxTris*4, RC_ALLOC_PERM); - if (!mesh.tris) - { - ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", maxTris*4); - return false; - } - - mesh.nverts = 0; - mesh.verts = (float*)rcAlloc(sizeof(float)*maxVerts*3, RC_ALLOC_PERM); - if (!mesh.verts) - { - ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d).", maxVerts*3); - return false; - } - - // Merge datas. - for (int i = 0; i < nmeshes; ++i) - { - rcPolyMeshDetail* dm = meshes[i]; - if (!dm) continue; - for (int j = 0; j < dm->nmeshes; ++j) - { - unsigned int* dst = &mesh.meshes[mesh.nmeshes*4]; - unsigned int* src = &dm->meshes[j*4]; - dst[0] = (unsigned int)mesh.nverts+src[0]; - dst[1] = src[1]; - dst[2] = (unsigned int)mesh.ntris+src[2]; - dst[3] = src[3]; - mesh.nmeshes++; - } - - for (int k = 0; k < dm->nverts; ++k) - { - rcVcopy(&mesh.verts[mesh.nverts*3], &dm->verts[k*3]); - mesh.nverts++; - } - for (int k = 0; k < dm->ntris; ++k) - { - mesh.tris[mesh.ntris*4+0] = dm->tris[k*4+0]; - mesh.tris[mesh.ntris*4+1] = dm->tris[k*4+1]; - mesh.tris[mesh.ntris*4+2] = dm->tris[k*4+2]; - mesh.tris[mesh.ntris*4+3] = dm->tris[k*4+3]; - mesh.ntris++; - } - } - - return true; -} diff --git a/recastnavigation/Recast/Source/RecastRasterization.cpp b/recastnavigation/Recast/Source/RecastRasterization.cpp deleted file mode 100644 index a4cef74..0000000 --- a/recastnavigation/Recast/Source/RecastRasterization.cpp +++ /dev/null @@ -1,454 +0,0 @@ -// -// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org -// -// This software is provided 'as-is', without any express or implied -// warranty. In no event will the authors be held liable for any damages -// arising from the use of this software. -// Permission is granted to anyone to use this software for any purpose, -// including commercial applications, and to alter it and redistribute it -// freely, subject to the following restrictions: -// 1. The origin of this software must not be misrepresented; you must not -// claim that you wrote the original software. If you use this software -// in a product, an acknowledgment in the product documentation would be -// appreciated but is not required. -// 2. Altered source versions must be plainly marked as such, and must not be -// misrepresented as being the original software. -// 3. This notice may not be removed or altered from any source distribution. -// - -#define _USE_MATH_DEFINES -#include -#include -#include "Recast.h" -#include "RecastAlloc.h" -#include "RecastAssert.h" - -inline bool overlapBounds(const float* amin, const float* amax, const float* bmin, const float* bmax) -{ - bool overlap = true; - overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap; - overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap; - overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap; - return overlap; -} - -inline bool overlapInterval(unsigned short amin, unsigned short amax, - unsigned short bmin, unsigned short bmax) -{ - if (amax < bmin) return false; - if (amin > bmax) return false; - return true; -} - - -static rcSpan* allocSpan(rcHeightfield& hf) -{ - // If running out of memory, allocate new page and update the freelist. - if (!hf.freelist || !hf.freelist->next) - { - // Create new page. - // Allocate memory for the new pool. - rcSpanPool* pool = (rcSpanPool*)rcAlloc(sizeof(rcSpanPool), RC_ALLOC_PERM); - if (!pool) return 0; - - // Add the pool into the list of pools. - pool->next = hf.pools; - hf.pools = pool; - // Add new items to the free list. - rcSpan* freelist = hf.freelist; - rcSpan* head = &pool->items[0]; - rcSpan* it = &pool->items[RC_SPANS_PER_POOL]; - do - { - --it; - it->next = freelist; - freelist = it; - } - while (it != head); - hf.freelist = it; - } - - // Pop item from in front of the free list. - rcSpan* it = hf.freelist; - hf.freelist = hf.freelist->next; - return it; -} - -static void freeSpan(rcHeightfield& hf, rcSpan* ptr) -{ - if (!ptr) return; - // Add the node in front of the free list. - ptr->next = hf.freelist; - hf.freelist = ptr; -} - -static bool addSpan(rcHeightfield& hf, const int x, const int y, - const unsigned short smin, const unsigned short smax, - const unsigned char area, const int flagMergeThr) -{ - - int idx = x + y*hf.width; - - rcSpan* s = allocSpan(hf); - if (!s) - return false; - s->smin = smin; - s->smax = smax; - s->area = area; - s->next = 0; - - // Empty cell, add the first span. - if (!hf.spans[idx]) - { - hf.spans[idx] = s; - return true; - } - rcSpan* prev = 0; - rcSpan* cur = hf.spans[idx]; - - // Insert and merge spans. - while (cur) - { - if (cur->smin > s->smax) - { - // Current span is further than the new span, break. - break; - } - else if (cur->smax < s->smin) - { - // Current span is before the new span advance. - prev = cur; - cur = cur->next; - } - else - { - // Merge spans. - if (cur->smin < s->smin) - s->smin = cur->smin; - if (cur->smax > s->smax) - s->smax = cur->smax; - - // Merge flags. - if (rcAbs((int)s->smax - (int)cur->smax) <= flagMergeThr) - s->area = rcMax(s->area, cur->area); - - // Remove current span. - rcSpan* next = cur->next; - freeSpan(hf, cur); - if (prev) - prev->next = next; - else - hf.spans[idx] = next; - cur = next; - } - } - - // Insert new span. - if (prev) - { - s->next = prev->next; - prev->next = s; - } - else - { - s->next = hf.spans[idx]; - hf.spans[idx] = s; - } - - return true; -} - -/// @par -/// -/// The span addition can be set to favor flags. If the span is merged to -/// another span and the new @p smax is within @p flagMergeThr units -/// from the existing span, the span flags are merged. -/// -/// @see rcHeightfield, rcSpan. -bool rcAddSpan(rcContext* ctx, rcHeightfield& hf, const int x, const int y, - const unsigned short smin, const unsigned short smax, - const unsigned char area, const int flagMergeThr) -{ - rcAssert(ctx); - - if (!addSpan(hf, x, y, smin, smax, area, flagMergeThr)) - { - ctx->log(RC_LOG_ERROR, "rcAddSpan: Out of memory."); - return false; - } - - return true; -} - -// divides a convex polygons into two convex polygons on both sides of a line -static void dividePoly(const float* in, int nin, - float* out1, int* nout1, - float* out2, int* nout2, - float x, int axis) -{ - float d[12]; - for (int i = 0; i < nin; ++i) - d[i] = x - in[i*3+axis]; - - int m = 0, n = 0; - for (int i = 0, j = nin-1; i < nin; j=i, ++i) - { - bool ina = d[j] >= 0; - bool inb = d[i] >= 0; - if (ina != inb) - { - float s = d[j] / (d[j] - d[i]); - out1[m*3+0] = in[j*3+0] + (in[i*3+0] - in[j*3+0])*s; - out1[m*3+1] = in[j*3+1] + (in[i*3+1] - in[j*3+1])*s; - out1[m*3+2] = in[j*3+2] + (in[i*3+2] - in[j*3+2])*s; - rcVcopy(out2 + n*3, out1 + m*3); - m++; - n++; - // add the i'th point to the right polygon. Do NOT add points that are on the dividing line - // since these were already added above - if (d[i] > 0) - { - rcVcopy(out1 + m*3, in + i*3); - m++; - } - else if (d[i] < 0) - { - rcVcopy(out2 + n*3, in + i*3); - n++; - } - } - else // same side - { - // add the i'th point to the right polygon. Addition is done even for points on the dividing line - if (d[i] >= 0) - { - rcVcopy(out1 + m*3, in + i*3); - m++; - if (d[i] != 0) - continue; - } - rcVcopy(out2 + n*3, in + i*3); - n++; - } - } - - *nout1 = m; - *nout2 = n; -} - - - -static bool rasterizeTri(const float* v0, const float* v1, const float* v2, - const unsigned char area, rcHeightfield& hf, - const float* bmin, const float* bmax, - const float cs, const float ics, const float ich, - const int flagMergeThr) -{ - const int w = hf.width; - const int h = hf.height; - float tmin[3], tmax[3]; - const float by = bmax[1] - bmin[1]; - - // Calculate the bounding box of the triangle. - rcVcopy(tmin, v0); - rcVcopy(tmax, v0); - rcVmin(tmin, v1); - rcVmin(tmin, v2); - rcVmax(tmax, v1); - rcVmax(tmax, v2); - - // If the triangle does not touch the bbox of the heightfield, skip the triagle. - if (!overlapBounds(bmin, bmax, tmin, tmax)) - return true; - - // Calculate the footprint of the triangle on the grid's y-axis - int y0 = (int)((tmin[2] - bmin[2])*ics); - int y1 = (int)((tmax[2] - bmin[2])*ics); - y0 = rcClamp(y0, 0, h-1); - y1 = rcClamp(y1, 0, h-1); - - // Clip the triangle into all grid cells it touches. - float buf[7*3*4]; - float *in = buf, *inrow = buf+7*3, *p1 = inrow+7*3, *p2 = p1+7*3; - - rcVcopy(&in[0], v0); - rcVcopy(&in[1*3], v1); - rcVcopy(&in[2*3], v2); - int nvrow, nvIn = 3; - - for (int y = y0; y <= y1; ++y) - { - // Clip polygon to row. Store the remaining polygon as well - const float cz = bmin[2] + y*cs; - dividePoly(in, nvIn, inrow, &nvrow, p1, &nvIn, cz+cs, 2); - rcSwap(in, p1); - if (nvrow < 3) continue; - - // find the horizontal bounds in the row - float minX = inrow[0], maxX = inrow[0]; - for (int i=1; i inrow[i*3]) minX = inrow[i*3]; - if (maxX < inrow[i*3]) maxX = inrow[i*3]; - } - int x0 = (int)((minX - bmin[0])*ics); - int x1 = (int)((maxX - bmin[0])*ics); - x0 = rcClamp(x0, 0, w-1); - x1 = rcClamp(x1, 0, w-1); - - int nv, nv2 = nvrow; - - for (int x = x0; x <= x1; ++x) - { - // Clip polygon to column. store the remaining polygon as well - const float cx = bmin[0] + x*cs; - dividePoly(inrow, nv2, p1, &nv, p2, &nv2, cx+cs, 0); - rcSwap(inrow, p2); - if (nv < 3) continue; - - // Calculate min and max of the span. - float smin = p1[1], smax = p1[1]; - for (int i = 1; i < nv; ++i) - { - smin = rcMin(smin, p1[i*3+1]); - smax = rcMax(smax, p1[i*3+1]); - } - smin -= bmin[1]; - smax -= bmin[1]; - // Skip the span if it is outside the heightfield bbox - if (smax < 0.0f) continue; - if (smin > by) continue; - // Clamp the span to the heightfield bbox. - if (smin < 0.0f) smin = 0; - if (smax > by) smax = by; - - // Snap the span to the heightfield height grid. - unsigned short ismin = (unsigned short)rcClamp((int)floorf(smin * ich), 0, RC_SPAN_MAX_HEIGHT); - unsigned short ismax = (unsigned short)rcClamp((int)ceilf(smax * ich), (int)ismin+1, RC_SPAN_MAX_HEIGHT); - - if (!addSpan(hf, x, y, ismin, ismax, area, flagMergeThr)) - return false; - } - } - - return true; -} - -/// @par -/// -/// No spans will be added if the triangle does not overlap the heightfield grid. -/// -/// @see rcHeightfield -bool rcRasterizeTriangle(rcContext* ctx, const float* v0, const float* v1, const float* v2, - const unsigned char area, rcHeightfield& solid, - const int flagMergeThr) -{ - rcAssert(ctx); - - rcScopedTimer timer(ctx, RC_TIMER_RASTERIZE_TRIANGLES); - - const float ics = 1.0f/solid.cs; - const float ich = 1.0f/solid.ch; - if (!rasterizeTri(v0, v1, v2, area, solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr)) - { - ctx->log(RC_LOG_ERROR, "rcRasterizeTriangle: Out of memory."); - return false; - } - - return true; -} - -/// @par -/// -/// Spans will only be added for triangles that overlap the heightfield grid. -/// -/// @see rcHeightfield -bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const int /*nv*/, - const int* tris, const unsigned char* areas, const int nt, - rcHeightfield& solid, const int flagMergeThr) -{ - rcAssert(ctx); - - rcScopedTimer timer(ctx, RC_TIMER_RASTERIZE_TRIANGLES); - - const float ics = 1.0f/solid.cs; - const float ich = 1.0f/solid.ch; - // Rasterize triangles. - for (int i = 0; i < nt; ++i) - { - const float* v0 = &verts[tris[i*3+0]*3]; - const float* v1 = &verts[tris[i*3+1]*3]; - const float* v2 = &verts[tris[i*3+2]*3]; - // Rasterize. - if (!rasterizeTri(v0, v1, v2, areas[i], solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr)) - { - ctx->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory."); - return false; - } - } - - return true; -} - -/// @par -/// -/// Spans will only be added for triangles that overlap the heightfield grid. -/// -/// @see rcHeightfield -bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const int /*nv*/, - const unsigned short* tris, const unsigned char* areas, const int nt, - rcHeightfield& solid, const int flagMergeThr) -{ - rcAssert(ctx); - - rcScopedTimer timer(ctx, RC_TIMER_RASTERIZE_TRIANGLES); - - const float ics = 1.0f/solid.cs; - const float ich = 1.0f/solid.ch; - // Rasterize triangles. - for (int i = 0; i < nt; ++i) - { - const float* v0 = &verts[tris[i*3+0]*3]; - const float* v1 = &verts[tris[i*3+1]*3]; - const float* v2 = &verts[tris[i*3+2]*3]; - // Rasterize. - if (!rasterizeTri(v0, v1, v2, areas[i], solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr)) - { - ctx->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory."); - return false; - } - } - - return true; -} - -/// @par -/// -/// Spans will only be added for triangles that overlap the heightfield grid. -/// -/// @see rcHeightfield -bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const unsigned char* areas, const int nt, - rcHeightfield& solid, const int flagMergeThr) -{ - rcAssert(ctx); - - rcScopedTimer timer(ctx, RC_TIMER_RASTERIZE_TRIANGLES); - - const float ics = 1.0f/solid.cs; - const float ich = 1.0f/solid.ch; - // Rasterize triangles. - for (int i = 0; i < nt; ++i) - { - const float* v0 = &verts[(i*3+0)*3]; - const float* v1 = &verts[(i*3+1)*3]; - const float* v2 = &verts[(i*3+2)*3]; - // Rasterize. - if (!rasterizeTri(v0, v1, v2, areas[i], solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr)) - { - ctx->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory."); - return false; - } - } - - return true; -} diff --git a/recastnavigation/Recast/Source/RecastRegion.cpp b/recastnavigation/Recast/Source/RecastRegion.cpp deleted file mode 100644 index e1fc0ee..0000000 --- a/recastnavigation/Recast/Source/RecastRegion.cpp +++ /dev/null @@ -1,1812 +0,0 @@ -// -// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org -// -// This software is provided 'as-is', without any express or implied -// warranty. In no event will the authors be held liable for any damages -// arising from the use of this software. -// Permission is granted to anyone to use this software for any purpose, -// including commercial applications, and to alter it and redistribute it -// freely, subject to the following restrictions: -// 1. The origin of this software must not be misrepresented; you must not -// claim that you wrote the original software. If you use this software -// in a product, an acknowledgment in the product documentation would be -// appreciated but is not required. -// 2. Altered source versions must be plainly marked as such, and must not be -// misrepresented as being the original software. -// 3. This notice may not be removed or altered from any source distribution. -// - -#include -#define _USE_MATH_DEFINES -#include -#include -#include -#include -#include "Recast.h" -#include "RecastAlloc.h" -#include "RecastAssert.h" - -namespace -{ -struct LevelStackEntry -{ - LevelStackEntry(int x_, int y_, int index_) : x(x_), y(y_), index(index_) {} - int x; - int y; - int index; -}; -} // namespace - -static void calculateDistanceField(rcCompactHeightfield& chf, unsigned short* src, unsigned short& maxDist) -{ - const int w = chf.width; - const int h = chf.height; - - // Init distance and points. - for (int i = 0; i < chf.spanCount; ++i) - src[i] = 0xffff; - - // Mark boundary cells. - for (int y = 0; y < h; ++y) - { - for (int x = 0; x < w; ++x) - { - const rcCompactCell& c = chf.cells[x+y*w]; - for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) - { - const rcCompactSpan& s = chf.spans[i]; - const unsigned char area = chf.areas[i]; - - int nc = 0; - for (int dir = 0; dir < 4; ++dir) - { - if (rcGetCon(s, dir) != RC_NOT_CONNECTED) - { - const int ax = x + rcGetDirOffsetX(dir); - const int ay = y + rcGetDirOffsetY(dir); - const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir); - if (area == chf.areas[ai]) - nc++; - } - } - if (nc != 4) - src[i] = 0; - } - } - } - - - // Pass 1 - for (int y = 0; y < h; ++y) - { - for (int x = 0; x < w; ++x) - { - const rcCompactCell& c = chf.cells[x+y*w]; - for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) - { - const rcCompactSpan& s = chf.spans[i]; - - if (rcGetCon(s, 0) != RC_NOT_CONNECTED) - { - // (-1,0) - const int ax = x + rcGetDirOffsetX(0); - const int ay = y + rcGetDirOffsetY(0); - const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0); - const rcCompactSpan& as = chf.spans[ai]; - if (src[ai]+2 < src[i]) - src[i] = src[ai]+2; - - // (-1,-1) - if (rcGetCon(as, 3) != RC_NOT_CONNECTED) - { - const int aax = ax + rcGetDirOffsetX(3); - const int aay = ay + rcGetDirOffsetY(3); - const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 3); - if (src[aai]+3 < src[i]) - src[i] = src[aai]+3; - } - } - if (rcGetCon(s, 3) != RC_NOT_CONNECTED) - { - // (0,-1) - const int ax = x + rcGetDirOffsetX(3); - const int ay = y + rcGetDirOffsetY(3); - const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3); - const rcCompactSpan& as = chf.spans[ai]; - if (src[ai]+2 < src[i]) - src[i] = src[ai]+2; - - // (1,-1) - if (rcGetCon(as, 2) != RC_NOT_CONNECTED) - { - const int aax = ax + rcGetDirOffsetX(2); - const int aay = ay + rcGetDirOffsetY(2); - const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 2); - if (src[aai]+3 < src[i]) - src[i] = src[aai]+3; - } - } - } - } - } - - // Pass 2 - for (int y = h-1; y >= 0; --y) - { - for (int x = w-1; x >= 0; --x) - { - const rcCompactCell& c = chf.cells[x+y*w]; - for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) - { - const rcCompactSpan& s = chf.spans[i]; - - if (rcGetCon(s, 2) != RC_NOT_CONNECTED) - { - // (1,0) - const int ax = x + rcGetDirOffsetX(2); - const int ay = y + rcGetDirOffsetY(2); - const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 2); - const rcCompactSpan& as = chf.spans[ai]; - if (src[ai]+2 < src[i]) - src[i] = src[ai]+2; - - // (1,1) - if (rcGetCon(as, 1) != RC_NOT_CONNECTED) - { - const int aax = ax + rcGetDirOffsetX(1); - const int aay = ay + rcGetDirOffsetY(1); - const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 1); - if (src[aai]+3 < src[i]) - src[i] = src[aai]+3; - } - } - if (rcGetCon(s, 1) != RC_NOT_CONNECTED) - { - // (0,1) - const int ax = x + rcGetDirOffsetX(1); - const int ay = y + rcGetDirOffsetY(1); - const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 1); - const rcCompactSpan& as = chf.spans[ai]; - if (src[ai]+2 < src[i]) - src[i] = src[ai]+2; - - // (-1,1) - if (rcGetCon(as, 0) != RC_NOT_CONNECTED) - { - const int aax = ax + rcGetDirOffsetX(0); - const int aay = ay + rcGetDirOffsetY(0); - const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 0); - if (src[aai]+3 < src[i]) - src[i] = src[aai]+3; - } - } - } - } - } - - maxDist = 0; - for (int i = 0; i < chf.spanCount; ++i) - maxDist = rcMax(src[i], maxDist); - -} - -static unsigned short* boxBlur(rcCompactHeightfield& chf, int thr, - unsigned short* src, unsigned short* dst) -{ - const int w = chf.width; - const int h = chf.height; - - thr *= 2; - - for (int y = 0; y < h; ++y) - { - for (int x = 0; x < w; ++x) - { - const rcCompactCell& c = chf.cells[x+y*w]; - for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) - { - const rcCompactSpan& s = chf.spans[i]; - const unsigned short cd = src[i]; - if (cd <= thr) - { - dst[i] = cd; - continue; - } - - int d = (int)cd; - for (int dir = 0; dir < 4; ++dir) - { - if (rcGetCon(s, dir) != RC_NOT_CONNECTED) - { - const int ax = x + rcGetDirOffsetX(dir); - const int ay = y + rcGetDirOffsetY(dir); - const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir); - d += (int)src[ai]; - - const rcCompactSpan& as = chf.spans[ai]; - const int dir2 = (dir+1) & 0x3; - if (rcGetCon(as, dir2) != RC_NOT_CONNECTED) - { - const int ax2 = ax + rcGetDirOffsetX(dir2); - const int ay2 = ay + rcGetDirOffsetY(dir2); - const int ai2 = (int)chf.cells[ax2+ay2*w].index + rcGetCon(as, dir2); - d += (int)src[ai2]; - } - else - { - d += cd; - } - } - else - { - d += cd*2; - } - } - dst[i] = (unsigned short)((d+5)/9); - } - } - } - return dst; -} - - -static bool floodRegion(int x, int y, int i, - unsigned short level, unsigned short r, - rcCompactHeightfield& chf, - unsigned short* srcReg, unsigned short* srcDist, - rcTempVector& stack) -{ - const int w = chf.width; - - const unsigned char area = chf.areas[i]; - - // Flood fill mark region. - stack.clear(); - stack.push_back(LevelStackEntry(x, y, i)); - srcReg[i] = r; - srcDist[i] = 0; - - unsigned short lev = level >= 2 ? level-2 : 0; - int count = 0; - - while (stack.size() > 0) - { - LevelStackEntry& back = stack.back(); - int cx = back.x; - int cy = back.y; - int ci = back.index; - stack.pop_back(); - - const rcCompactSpan& cs = chf.spans[ci]; - - // Check if any of the neighbours already have a valid region set. - unsigned short ar = 0; - for (int dir = 0; dir < 4; ++dir) - { - // 8 connected - if (rcGetCon(cs, dir) != RC_NOT_CONNECTED) - { - const int ax = cx + rcGetDirOffsetX(dir); - const int ay = cy + rcGetDirOffsetY(dir); - const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(cs, dir); - if (chf.areas[ai] != area) - continue; - unsigned short nr = srcReg[ai]; - if (nr & RC_BORDER_REG) // Do not take borders into account. - continue; - if (nr != 0 && nr != r) - { - ar = nr; - break; - } - - const rcCompactSpan& as = chf.spans[ai]; - - const int dir2 = (dir+1) & 0x3; - if (rcGetCon(as, dir2) != RC_NOT_CONNECTED) - { - const int ax2 = ax + rcGetDirOffsetX(dir2); - const int ay2 = ay + rcGetDirOffsetY(dir2); - const int ai2 = (int)chf.cells[ax2+ay2*w].index + rcGetCon(as, dir2); - if (chf.areas[ai2] != area) - continue; - unsigned short nr2 = srcReg[ai2]; - if (nr2 != 0 && nr2 != r) - { - ar = nr2; - break; - } - } - } - } - if (ar != 0) - { - srcReg[ci] = 0; - continue; - } - - count++; - - // Expand neighbours. - for (int dir = 0; dir < 4; ++dir) - { - if (rcGetCon(cs, dir) != RC_NOT_CONNECTED) - { - const int ax = cx + rcGetDirOffsetX(dir); - const int ay = cy + rcGetDirOffsetY(dir); - const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(cs, dir); - if (chf.areas[ai] != area) - continue; - if (chf.dist[ai] >= lev && srcReg[ai] == 0) - { - srcReg[ai] = r; - srcDist[ai] = 0; - stack.push_back(LevelStackEntry(ax, ay, ai)); - } - } - } - } - - return count > 0; -} - -// Struct to keep track of entries in the region table that have been changed. -struct DirtyEntry -{ - DirtyEntry(int index_, unsigned short region_, unsigned short distance2_) - : index(index_), region(region_), distance2(distance2_) {} - int index; - unsigned short region; - unsigned short distance2; -}; -static void expandRegions(int maxIter, unsigned short level, - rcCompactHeightfield& chf, - unsigned short* srcReg, unsigned short* srcDist, - rcTempVector& stack, - bool fillStack) -{ - const int w = chf.width; - const int h = chf.height; - - if (fillStack) - { - // Find cells revealed by the raised level. - stack.clear(); - for (int y = 0; y < h; ++y) - { - for (int x = 0; x < w; ++x) - { - const rcCompactCell& c = chf.cells[x+y*w]; - for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) - { - if (chf.dist[i] >= level && srcReg[i] == 0 && chf.areas[i] != RC_NULL_AREA) - { - stack.push_back(LevelStackEntry(x, y, i)); - } - } - } - } - } - else // use cells in the input stack - { - // mark all cells which already have a region - for (int j=0; j dirtyEntries; - int iter = 0; - while (stack.size() > 0) - { - int failed = 0; - dirtyEntries.clear(); - - for (int j = 0; j < stack.size(); j++) - { - int x = stack[j].x; - int y = stack[j].y; - int i = stack[j].index; - if (i < 0) - { - failed++; - continue; - } - - unsigned short r = srcReg[i]; - unsigned short d2 = 0xffff; - const unsigned char area = chf.areas[i]; - const rcCompactSpan& s = chf.spans[i]; - for (int dir = 0; dir < 4; ++dir) - { - if (rcGetCon(s, dir) == RC_NOT_CONNECTED) continue; - const int ax = x + rcGetDirOffsetX(dir); - const int ay = y + rcGetDirOffsetY(dir); - const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir); - if (chf.areas[ai] != area) continue; - if (srcReg[ai] > 0 && (srcReg[ai] & RC_BORDER_REG) == 0) - { - if ((int)srcDist[ai]+2 < (int)d2) - { - r = srcReg[ai]; - d2 = srcDist[ai]+2; - } - } - } - if (r) - { - stack[j].index = -1; // mark as used - dirtyEntries.push_back(DirtyEntry(i, r, d2)); - } - else - { - failed++; - } - } - - // Copy entries that differ between src and dst to keep them in sync. - for (int i = 0; i < dirtyEntries.size(); i++) { - int idx = dirtyEntries[i].index; - srcReg[idx] = dirtyEntries[i].region; - srcDist[idx] = dirtyEntries[i].distance2; - } - - if (failed == stack.size()) - break; - - if (level > 0) - { - ++iter; - if (iter >= maxIter) - break; - } - } -} - - - -static void sortCellsByLevel(unsigned short startLevel, - rcCompactHeightfield& chf, - const unsigned short* srcReg, - unsigned int nbStacks, rcTempVector* stacks, - unsigned short loglevelsPerStack) // the levels per stack (2 in our case) as a bit shift -{ - const int w = chf.width; - const int h = chf.height; - startLevel = startLevel >> loglevelsPerStack; - - for (unsigned int j=0; j> loglevelsPerStack; - int sId = startLevel - level; - if (sId >= (int)nbStacks) - continue; - if (sId < 0) - sId = 0; - - stacks[sId].push_back(LevelStackEntry(x, y, i)); - } - } - } -} - - -static void appendStacks(const rcTempVector& srcStack, - rcTempVector& dstStack, - const unsigned short* srcReg) -{ - for (int j=0; j 1; ) - { - int ni = (i+1) % reg.connections.size(); - if (reg.connections[i] == reg.connections[ni]) - { - // Remove duplicate - for (int j = i; j < reg.connections.size()-1; ++j) - reg.connections[j] = reg.connections[j+1]; - reg.connections.pop(); - } - else - ++i; - } -} - -static void replaceNeighbour(rcRegion& reg, unsigned short oldId, unsigned short newId) -{ - bool neiChanged = false; - for (int i = 0; i < reg.connections.size(); ++i) - { - if (reg.connections[i] == oldId) - { - reg.connections[i] = newId; - neiChanged = true; - } - } - for (int i = 0; i < reg.floors.size(); ++i) - { - if (reg.floors[i] == oldId) - reg.floors[i] = newId; - } - if (neiChanged) - removeAdjacentNeighbours(reg); -} - -static bool canMergeWithRegion(const rcRegion& rega, const rcRegion& regb) -{ - if (rega.areaType != regb.areaType) - return false; - int n = 0; - for (int i = 0; i < rega.connections.size(); ++i) - { - if (rega.connections[i] == regb.id) - n++; - } - if (n > 1) - return false; - for (int i = 0; i < rega.floors.size(); ++i) - { - if (rega.floors[i] == regb.id) - return false; - } - return true; -} - -static void addUniqueFloorRegion(rcRegion& reg, int n) -{ - for (int i = 0; i < reg.floors.size(); ++i) - if (reg.floors[i] == n) - return; - reg.floors.push(n); -} - -static bool mergeRegions(rcRegion& rega, rcRegion& regb) -{ - unsigned short aid = rega.id; - unsigned short bid = regb.id; - - // Duplicate current neighbourhood. - rcIntArray acon; - acon.resize(rega.connections.size()); - for (int i = 0; i < rega.connections.size(); ++i) - acon[i] = rega.connections[i]; - rcIntArray& bcon = regb.connections; - - // Find insertion point on A. - int insa = -1; - for (int i = 0; i < acon.size(); ++i) - { - if (acon[i] == bid) - { - insa = i; - break; - } - } - if (insa == -1) - return false; - - // Find insertion point on B. - int insb = -1; - for (int i = 0; i < bcon.size(); ++i) - { - if (bcon[i] == aid) - { - insb = i; - break; - } - } - if (insb == -1) - return false; - - // Merge neighbours. - rega.connections.resize(0); - for (int i = 0, ni = acon.size(); i < ni-1; ++i) - rega.connections.push(acon[(insa+1+i) % ni]); - - for (int i = 0, ni = bcon.size(); i < ni-1; ++i) - rega.connections.push(bcon[(insb+1+i) % ni]); - - removeAdjacentNeighbours(rega); - - for (int j = 0; j < regb.floors.size(); ++j) - addUniqueFloorRegion(rega, regb.floors[j]); - rega.spanCount += regb.spanCount; - regb.spanCount = 0; - regb.connections.resize(0); - - return true; -} - -static bool isRegionConnectedToBorder(const rcRegion& reg) -{ - // Region is connected to border if - // one of the neighbours is null id. - for (int i = 0; i < reg.connections.size(); ++i) - { - if (reg.connections[i] == 0) - return true; - } - return false; -} - -static bool isSolidEdge(rcCompactHeightfield& chf, const unsigned short* srcReg, - int x, int y, int i, int dir) -{ - const rcCompactSpan& s = chf.spans[i]; - unsigned short r = 0; - if (rcGetCon(s, dir) != RC_NOT_CONNECTED) - { - const int ax = x + rcGetDirOffsetX(dir); - const int ay = y + rcGetDirOffsetY(dir); - const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir); - r = srcReg[ai]; - } - if (r == srcReg[i]) - return false; - return true; -} - -static void walkContour(int x, int y, int i, int dir, - rcCompactHeightfield& chf, - const unsigned short* srcReg, - rcIntArray& cont) -{ - int startDir = dir; - int starti = i; - - const rcCompactSpan& ss = chf.spans[i]; - unsigned short curReg = 0; - if (rcGetCon(ss, dir) != RC_NOT_CONNECTED) - { - const int ax = x + rcGetDirOffsetX(dir); - const int ay = y + rcGetDirOffsetY(dir); - const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(ss, dir); - curReg = srcReg[ai]; - } - cont.push(curReg); - - int iter = 0; - while (++iter < 40000) - { - const rcCompactSpan& s = chf.spans[i]; - - if (isSolidEdge(chf, srcReg, x, y, i, dir)) - { - // Choose the edge corner - unsigned short r = 0; - if (rcGetCon(s, dir) != RC_NOT_CONNECTED) - { - const int ax = x + rcGetDirOffsetX(dir); - const int ay = y + rcGetDirOffsetY(dir); - const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir); - r = srcReg[ai]; - } - if (r != curReg) - { - curReg = r; - cont.push(curReg); - } - - dir = (dir+1) & 0x3; // Rotate CW - } - else - { - int ni = -1; - const int nx = x + rcGetDirOffsetX(dir); - const int ny = y + rcGetDirOffsetY(dir); - if (rcGetCon(s, dir) != RC_NOT_CONNECTED) - { - const rcCompactCell& nc = chf.cells[nx+ny*chf.width]; - ni = (int)nc.index + rcGetCon(s, dir); - } - if (ni == -1) - { - // Should not happen. - return; - } - x = nx; - y = ny; - i = ni; - dir = (dir+3) & 0x3; // Rotate CCW - } - - if (starti == i && startDir == dir) - { - break; - } - } - - // Remove adjacent duplicates. - if (cont.size() > 1) - { - for (int j = 0; j < cont.size(); ) - { - int nj = (j+1) % cont.size(); - if (cont[j] == cont[nj]) - { - for (int k = j; k < cont.size()-1; ++k) - cont[k] = cont[k+1]; - cont.pop(); - } - else - ++j; - } - } -} - - -static bool mergeAndFilterRegions(rcContext* ctx, int minRegionArea, int mergeRegionSize, - unsigned short& maxRegionId, - rcCompactHeightfield& chf, - unsigned short* srcReg, rcIntArray& overlaps) -{ - const int w = chf.width; - const int h = chf.height; - - const int nreg = maxRegionId+1; - rcTempVector regions; - if (!regions.reserve(nreg)) { - ctx->log(RC_LOG_ERROR, "mergeAndFilterRegions: Out of memory 'regions' (%d).", nreg); - return false; - } - - // Construct regions - for (int i = 0; i < nreg; ++i) - regions.push_back(rcRegion((unsigned short) i)); - - // Find edge of a region and find connections around the contour. - for (int y = 0; y < h; ++y) - { - for (int x = 0; x < w; ++x) - { - const rcCompactCell& c = chf.cells[x+y*w]; - for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) - { - unsigned short r = srcReg[i]; - if (r == 0 || r >= nreg) - continue; - - rcRegion& reg = regions[r]; - reg.spanCount++; - - // Update floors. - for (int j = (int)c.index; j < ni; ++j) - { - if (i == j) continue; - unsigned short floorId = srcReg[j]; - if (floorId == 0 || floorId >= nreg) - continue; - if (floorId == r) - reg.overlap = true; - addUniqueFloorRegion(reg, floorId); - } - - // Have found contour - if (reg.connections.size() > 0) - continue; - - reg.areaType = chf.areas[i]; - - // Check if this cell is next to a border. - int ndir = -1; - for (int dir = 0; dir < 4; ++dir) - { - if (isSolidEdge(chf, srcReg, x, y, i, dir)) - { - ndir = dir; - break; - } - } - - if (ndir != -1) - { - // The cell is at border. - // Walk around the contour to find all the neighbours. - walkContour(x, y, i, ndir, chf, srcReg, reg.connections); - } - } - } - } - - // Remove too small regions. - rcIntArray stack(32); - rcIntArray trace(32); - for (int i = 0; i < nreg; ++i) - { - rcRegion& reg = regions[i]; - if (reg.id == 0 || (reg.id & RC_BORDER_REG)) - continue; - if (reg.spanCount == 0) - continue; - if (reg.visited) - continue; - - // Count the total size of all the connected regions. - // Also keep track of the regions connects to a tile border. - bool connectsToBorder = false; - int spanCount = 0; - stack.resize(0); - trace.resize(0); - - reg.visited = true; - stack.push(i); - - while (stack.size()) - { - // Pop - int ri = stack.pop(); - - rcRegion& creg = regions[ri]; - - spanCount += creg.spanCount; - trace.push(ri); - - for (int j = 0; j < creg.connections.size(); ++j) - { - if (creg.connections[j] & RC_BORDER_REG) - { - connectsToBorder = true; - continue; - } - rcRegion& neireg = regions[creg.connections[j]]; - if (neireg.visited) - continue; - if (neireg.id == 0 || (neireg.id & RC_BORDER_REG)) - continue; - // Visit - stack.push(neireg.id); - neireg.visited = true; - } - } - - // If the accumulated regions size is too small, remove it. - // Do not remove areas which connect to tile borders - // as their size cannot be estimated correctly and removing them - // can potentially remove necessary areas. - if (spanCount < minRegionArea && !connectsToBorder) - { - // Kill all visited regions. - for (int j = 0; j < trace.size(); ++j) - { - regions[trace[j]].spanCount = 0; - regions[trace[j]].id = 0; - } - } - } - - // Merge too small regions to neighbour regions. - int mergeCount = 0 ; - do - { - mergeCount = 0; - for (int i = 0; i < nreg; ++i) - { - rcRegion& reg = regions[i]; - if (reg.id == 0 || (reg.id & RC_BORDER_REG)) - continue; - if (reg.overlap) - continue; - if (reg.spanCount == 0) - continue; - - // Check to see if the region should be merged. - if (reg.spanCount > mergeRegionSize && isRegionConnectedToBorder(reg)) - continue; - - // Small region with more than 1 connection. - // Or region which is not connected to a border at all. - // Find smallest neighbour region that connects to this one. - int smallest = 0xfffffff; - unsigned short mergeId = reg.id; - for (int j = 0; j < reg.connections.size(); ++j) - { - if (reg.connections[j] & RC_BORDER_REG) continue; - rcRegion& mreg = regions[reg.connections[j]]; - if (mreg.id == 0 || (mreg.id & RC_BORDER_REG) || mreg.overlap) continue; - if (mreg.spanCount < smallest && - canMergeWithRegion(reg, mreg) && - canMergeWithRegion(mreg, reg)) - { - smallest = mreg.spanCount; - mergeId = mreg.id; - } - } - // Found new id. - if (mergeId != reg.id) - { - unsigned short oldId = reg.id; - rcRegion& target = regions[mergeId]; - - // Merge neighbours. - if (mergeRegions(target, reg)) - { - // Fixup regions pointing to current region. - for (int j = 0; j < nreg; ++j) - { - if (regions[j].id == 0 || (regions[j].id & RC_BORDER_REG)) continue; - // If another region was already merged into current region - // change the nid of the previous region too. - if (regions[j].id == oldId) - regions[j].id = mergeId; - // Replace the current region with the new one if the - // current regions is neighbour. - replaceNeighbour(regions[j], oldId, mergeId); - } - mergeCount++; - } - } - } - } - while (mergeCount > 0); - - // Compress region Ids. - for (int i = 0; i < nreg; ++i) - { - regions[i].remap = false; - if (regions[i].id == 0) continue; // Skip nil regions. - if (regions[i].id & RC_BORDER_REG) continue; // Skip external regions. - regions[i].remap = true; - } - - unsigned short regIdGen = 0; - for (int i = 0; i < nreg; ++i) - { - if (!regions[i].remap) - continue; - unsigned short oldId = regions[i].id; - unsigned short newId = ++regIdGen; - for (int j = i; j < nreg; ++j) - { - if (regions[j].id == oldId) - { - regions[j].id = newId; - regions[j].remap = false; - } - } - } - maxRegionId = regIdGen; - - // Remap regions. - for (int i = 0; i < chf.spanCount; ++i) - { - if ((srcReg[i] & RC_BORDER_REG) == 0) - srcReg[i] = regions[srcReg[i]].id; - } - - // Return regions that we found to be overlapping. - for (int i = 0; i < nreg; ++i) - if (regions[i].overlap) - overlaps.push(regions[i].id); - - return true; -} - - -static void addUniqueConnection(rcRegion& reg, int n) -{ - for (int i = 0; i < reg.connections.size(); ++i) - if (reg.connections[i] == n) - return; - reg.connections.push(n); -} - -static bool mergeAndFilterLayerRegions(rcContext* ctx, int minRegionArea, - unsigned short& maxRegionId, - rcCompactHeightfield& chf, - unsigned short* srcReg) -{ - const int w = chf.width; - const int h = chf.height; - - const int nreg = maxRegionId+1; - rcTempVector regions; - - // Construct regions - if (!regions.reserve(nreg)) { - ctx->log(RC_LOG_ERROR, "mergeAndFilterLayerRegions: Out of memory 'regions' (%d).", nreg); - return false; - } - for (int i = 0; i < nreg; ++i) - regions.push_back(rcRegion((unsigned short) i)); - - // Find region neighbours and overlapping regions. - rcIntArray lregs(32); - for (int y = 0; y < h; ++y) - { - for (int x = 0; x < w; ++x) - { - const rcCompactCell& c = chf.cells[x+y*w]; - - lregs.resize(0); - - for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) - { - const rcCompactSpan& s = chf.spans[i]; - const unsigned short ri = srcReg[i]; - if (ri == 0 || ri >= nreg) continue; - rcRegion& reg = regions[ri]; - - reg.spanCount++; - - reg.ymin = rcMin(reg.ymin, s.y); - reg.ymax = rcMax(reg.ymax, s.y); - - // Collect all region layers. - lregs.push(ri); - - // Update neighbours - for (int dir = 0; dir < 4; ++dir) - { - if (rcGetCon(s, dir) != RC_NOT_CONNECTED) - { - const int ax = x + rcGetDirOffsetX(dir); - const int ay = y + rcGetDirOffsetY(dir); - const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir); - const unsigned short rai = srcReg[ai]; - if (rai > 0 && rai < nreg && rai != ri) - addUniqueConnection(reg, rai); - if (rai & RC_BORDER_REG) - reg.connectsToBorder = true; - } - } - - } - - // Update overlapping regions. - for (int i = 0; i < lregs.size()-1; ++i) - { - for (int j = i+1; j < lregs.size(); ++j) - { - if (lregs[i] != lregs[j]) - { - rcRegion& ri = regions[lregs[i]]; - rcRegion& rj = regions[lregs[j]]; - addUniqueFloorRegion(ri, lregs[j]); - addUniqueFloorRegion(rj, lregs[i]); - } - } - } - - } - } - - // Create 2D layers from regions. - unsigned short layerId = 1; - - for (int i = 0; i < nreg; ++i) - regions[i].id = 0; - - // Merge montone regions to create non-overlapping areas. - rcIntArray stack(32); - for (int i = 1; i < nreg; ++i) - { - rcRegion& root = regions[i]; - // Skip already visited. - if (root.id != 0) - continue; - - // Start search. - root.id = layerId; - - stack.resize(0); - stack.push(i); - - while (stack.size() > 0) - { - // Pop front - rcRegion& reg = regions[stack[0]]; - for (int j = 0; j < stack.size()-1; ++j) - stack[j] = stack[j+1]; - stack.resize(stack.size()-1); - - const int ncons = (int)reg.connections.size(); - for (int j = 0; j < ncons; ++j) - { - const int nei = reg.connections[j]; - rcRegion& regn = regions[nei]; - // Skip already visited. - if (regn.id != 0) - continue; - // Skip if the neighbour is overlapping root region. - bool overlap = false; - for (int k = 0; k < root.floors.size(); k++) - { - if (root.floors[k] == nei) - { - overlap = true; - break; - } - } - if (overlap) - continue; - - // Deepen - stack.push(nei); - - // Mark layer id - regn.id = layerId; - // Merge current layers to root. - for (int k = 0; k < regn.floors.size(); ++k) - addUniqueFloorRegion(root, regn.floors[k]); - root.ymin = rcMin(root.ymin, regn.ymin); - root.ymax = rcMax(root.ymax, regn.ymax); - root.spanCount += regn.spanCount; - regn.spanCount = 0; - root.connectsToBorder = root.connectsToBorder || regn.connectsToBorder; - } - } - - layerId++; - } - - // Remove small regions - for (int i = 0; i < nreg; ++i) - { - if (regions[i].spanCount > 0 && regions[i].spanCount < minRegionArea && !regions[i].connectsToBorder) - { - unsigned short reg = regions[i].id; - for (int j = 0; j < nreg; ++j) - if (regions[j].id == reg) - regions[j].id = 0; - } - } - - // Compress region Ids. - for (int i = 0; i < nreg; ++i) - { - regions[i].remap = false; - if (regions[i].id == 0) continue; // Skip nil regions. - if (regions[i].id & RC_BORDER_REG) continue; // Skip external regions. - regions[i].remap = true; - } - - unsigned short regIdGen = 0; - for (int i = 0; i < nreg; ++i) - { - if (!regions[i].remap) - continue; - unsigned short oldId = regions[i].id; - unsigned short newId = ++regIdGen; - for (int j = i; j < nreg; ++j) - { - if (regions[j].id == oldId) - { - regions[j].id = newId; - regions[j].remap = false; - } - } - } - maxRegionId = regIdGen; - - // Remap regions. - for (int i = 0; i < chf.spanCount; ++i) - { - if ((srcReg[i] & RC_BORDER_REG) == 0) - srcReg[i] = regions[srcReg[i]].id; - } - - return true; -} - - - -/// @par -/// -/// This is usually the second to the last step in creating a fully built -/// compact heightfield. This step is required before regions are built -/// using #rcBuildRegions or #rcBuildRegionsMonotone. -/// -/// After this step, the distance data is available via the rcCompactHeightfield::maxDistance -/// and rcCompactHeightfield::dist fields. -/// -/// @see rcCompactHeightfield, rcBuildRegions, rcBuildRegionsMonotone -bool rcBuildDistanceField(rcContext* ctx, rcCompactHeightfield& chf) -{ - rcAssert(ctx); - - rcScopedTimer timer(ctx, RC_TIMER_BUILD_DISTANCEFIELD); - - if (chf.dist) - { - rcFree(chf.dist); - chf.dist = 0; - } - - unsigned short* src = (unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_TEMP); - if (!src) - { - ctx->log(RC_LOG_ERROR, "rcBuildDistanceField: Out of memory 'src' (%d).", chf.spanCount); - return false; - } - unsigned short* dst = (unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_TEMP); - if (!dst) - { - ctx->log(RC_LOG_ERROR, "rcBuildDistanceField: Out of memory 'dst' (%d).", chf.spanCount); - rcFree(src); - return false; - } - - unsigned short maxDist = 0; - - { - rcScopedTimer timerDist(ctx, RC_TIMER_BUILD_DISTANCEFIELD_DIST); - - calculateDistanceField(chf, src, maxDist); - chf.maxDistance = maxDist; - } - - { - rcScopedTimer timerBlur(ctx, RC_TIMER_BUILD_DISTANCEFIELD_BLUR); - - // Blur - if (boxBlur(chf, 1, src, dst) != src) - rcSwap(src, dst); - - // Store distance. - chf.dist = src; - } - - rcFree(dst); - - return true; -} - -static void paintRectRegion(int minx, int maxx, int miny, int maxy, unsigned short regId, - rcCompactHeightfield& chf, unsigned short* srcReg) -{ - const int w = chf.width; - for (int y = miny; y < maxy; ++y) - { - for (int x = minx; x < maxx; ++x) - { - const rcCompactCell& c = chf.cells[x+y*w]; - for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) - { - if (chf.areas[i] != RC_NULL_AREA) - srcReg[i] = regId; - } - } - } -} - - -static const unsigned short RC_NULL_NEI = 0xffff; - -struct rcSweepSpan -{ - unsigned short rid; // row id - unsigned short id; // region id - unsigned short ns; // number samples - unsigned short nei; // neighbour id -}; - -/// @par -/// -/// Non-null regions will consist of connected, non-overlapping walkable spans that form a single contour. -/// Contours will form simple polygons. -/// -/// If multiple regions form an area that is smaller than @p minRegionArea, then all spans will be -/// re-assigned to the zero (null) region. -/// -/// Partitioning can result in smaller than necessary regions. @p mergeRegionArea helps -/// reduce unecessarily small regions. -/// -/// See the #rcConfig documentation for more information on the configuration parameters. -/// -/// The region data will be available via the rcCompactHeightfield::maxRegions -/// and rcCompactSpan::reg fields. -/// -/// @warning The distance field must be created using #rcBuildDistanceField before attempting to build regions. -/// -/// @see rcCompactHeightfield, rcCompactSpan, rcBuildDistanceField, rcBuildRegionsMonotone, rcConfig -bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf, - const int borderSize, const int minRegionArea, const int mergeRegionArea) -{ - rcAssert(ctx); - - rcScopedTimer timer(ctx, RC_TIMER_BUILD_REGIONS); - - const int w = chf.width; - const int h = chf.height; - unsigned short id = 1; - - rcScopedDelete srcReg((unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_TEMP)); - if (!srcReg) - { - ctx->log(RC_LOG_ERROR, "rcBuildRegionsMonotone: Out of memory 'src' (%d).", chf.spanCount); - return false; - } - memset(srcReg,0,sizeof(unsigned short)*chf.spanCount); - - const int nsweeps = rcMax(chf.width,chf.height); - rcScopedDelete sweeps((rcSweepSpan*)rcAlloc(sizeof(rcSweepSpan)*nsweeps, RC_ALLOC_TEMP)); - if (!sweeps) - { - ctx->log(RC_LOG_ERROR, "rcBuildRegionsMonotone: Out of memory 'sweeps' (%d).", nsweeps); - return false; - } - - - // Mark border regions. - if (borderSize > 0) - { - // Make sure border will not overflow. - const int bw = rcMin(w, borderSize); - const int bh = rcMin(h, borderSize); - // Paint regions - paintRectRegion(0, bw, 0, h, id|RC_BORDER_REG, chf, srcReg); id++; - paintRectRegion(w-bw, w, 0, h, id|RC_BORDER_REG, chf, srcReg); id++; - paintRectRegion(0, w, 0, bh, id|RC_BORDER_REG, chf, srcReg); id++; - paintRectRegion(0, w, h-bh, h, id|RC_BORDER_REG, chf, srcReg); id++; - } - - chf.borderSize = borderSize; - - rcIntArray prev(256); - - // Sweep one line at a time. - for (int y = borderSize; y < h-borderSize; ++y) - { - // Collect spans from this row. - prev.resize(id+1); - memset(&prev[0],0,sizeof(int)*id); - unsigned short rid = 1; - - for (int x = borderSize; x < w-borderSize; ++x) - { - const rcCompactCell& c = chf.cells[x+y*w]; - - for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) - { - const rcCompactSpan& s = chf.spans[i]; - if (chf.areas[i] == RC_NULL_AREA) continue; - - // -x - unsigned short previd = 0; - if (rcGetCon(s, 0) != RC_NOT_CONNECTED) - { - const int ax = x + rcGetDirOffsetX(0); - const int ay = y + rcGetDirOffsetY(0); - const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0); - if ((srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai]) - previd = srcReg[ai]; - } - - if (!previd) - { - previd = rid++; - sweeps[previd].rid = previd; - sweeps[previd].ns = 0; - sweeps[previd].nei = 0; - } - - // -y - if (rcGetCon(s,3) != RC_NOT_CONNECTED) - { - const int ax = x + rcGetDirOffsetX(3); - const int ay = y + rcGetDirOffsetY(3); - const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3); - if (srcReg[ai] && (srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai]) - { - unsigned short nr = srcReg[ai]; - if (!sweeps[previd].nei || sweeps[previd].nei == nr) - { - sweeps[previd].nei = nr; - sweeps[previd].ns++; - prev[nr]++; - } - else - { - sweeps[previd].nei = RC_NULL_NEI; - } - } - } - - srcReg[i] = previd; - } - } - - // Create unique ID. - for (int i = 1; i < rid; ++i) - { - if (sweeps[i].nei != RC_NULL_NEI && sweeps[i].nei != 0 && - prev[sweeps[i].nei] == (int)sweeps[i].ns) - { - sweeps[i].id = sweeps[i].nei; - } - else - { - sweeps[i].id = id++; - } - } - - // Remap IDs - for (int x = borderSize; x < w-borderSize; ++x) - { - const rcCompactCell& c = chf.cells[x+y*w]; - - for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) - { - if (srcReg[i] > 0 && srcReg[i] < rid) - srcReg[i] = sweeps[srcReg[i]].id; - } - } - } - - - { - rcScopedTimer timerFilter(ctx, RC_TIMER_BUILD_REGIONS_FILTER); - - // Merge regions and filter out small regions. - rcIntArray overlaps; - chf.maxRegions = id; - if (!mergeAndFilterRegions(ctx, minRegionArea, mergeRegionArea, chf.maxRegions, chf, srcReg, overlaps)) - return false; - - // Monotone partitioning does not generate overlapping regions. - } - - // Store the result out. - for (int i = 0; i < chf.spanCount; ++i) - chf.spans[i].reg = srcReg[i]; - - return true; -} - -/// @par -/// -/// Non-null regions will consist of connected, non-overlapping walkable spans that form a single contour. -/// Contours will form simple polygons. -/// -/// If multiple regions form an area that is smaller than @p minRegionArea, then all spans will be -/// re-assigned to the zero (null) region. -/// -/// Watershed partitioning can result in smaller than necessary regions, especially in diagonal corridors. -/// @p mergeRegionArea helps reduce unecessarily small regions. -/// -/// See the #rcConfig documentation for more information on the configuration parameters. -/// -/// The region data will be available via the rcCompactHeightfield::maxRegions -/// and rcCompactSpan::reg fields. -/// -/// @warning The distance field must be created using #rcBuildDistanceField before attempting to build regions. -/// -/// @see rcCompactHeightfield, rcCompactSpan, rcBuildDistanceField, rcBuildRegionsMonotone, rcConfig -bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf, - const int borderSize, const int minRegionArea, const int mergeRegionArea) -{ - rcAssert(ctx); - - rcScopedTimer timer(ctx, RC_TIMER_BUILD_REGIONS); - - const int w = chf.width; - const int h = chf.height; - - rcScopedDelete buf((unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount*2, RC_ALLOC_TEMP)); - if (!buf) - { - ctx->log(RC_LOG_ERROR, "rcBuildRegions: Out of memory 'tmp' (%d).", chf.spanCount*4); - return false; - } - - ctx->startTimer(RC_TIMER_BUILD_REGIONS_WATERSHED); - - const int LOG_NB_STACKS = 3; - const int NB_STACKS = 1 << LOG_NB_STACKS; - rcTempVector lvlStacks[NB_STACKS]; - for (int i=0; i stack; - stack.reserve(256); - - unsigned short* srcReg = buf; - unsigned short* srcDist = buf+chf.spanCount; - - memset(srcReg, 0, sizeof(unsigned short)*chf.spanCount); - memset(srcDist, 0, sizeof(unsigned short)*chf.spanCount); - - unsigned short regionId = 1; - unsigned short level = (chf.maxDistance+1) & ~1; - - // TODO: Figure better formula, expandIters defines how much the - // watershed "overflows" and simplifies the regions. Tying it to - // agent radius was usually good indication how greedy it could be. -// const int expandIters = 4 + walkableRadius * 2; - const int expandIters = 8; - - if (borderSize > 0) - { - // Make sure border will not overflow. - const int bw = rcMin(w, borderSize); - const int bh = rcMin(h, borderSize); - - // Paint regions - paintRectRegion(0, bw, 0, h, regionId|RC_BORDER_REG, chf, srcReg); regionId++; - paintRectRegion(w-bw, w, 0, h, regionId|RC_BORDER_REG, chf, srcReg); regionId++; - paintRectRegion(0, w, 0, bh, regionId|RC_BORDER_REG, chf, srcReg); regionId++; - paintRectRegion(0, w, h-bh, h, regionId|RC_BORDER_REG, chf, srcReg); regionId++; - } - - chf.borderSize = borderSize; - - int sId = -1; - while (level > 0) - { - level = level >= 2 ? level-2 : 0; - sId = (sId+1) & (NB_STACKS-1); - -// ctx->startTimer(RC_TIMER_DIVIDE_TO_LEVELS); - - if (sId == 0) - sortCellsByLevel(level, chf, srcReg, NB_STACKS, lvlStacks, 1); - else - appendStacks(lvlStacks[sId-1], lvlStacks[sId], srcReg); // copy left overs from last level - -// ctx->stopTimer(RC_TIMER_DIVIDE_TO_LEVELS); - - { - rcScopedTimer timerExpand(ctx, RC_TIMER_BUILD_REGIONS_EXPAND); - - // Expand current regions until no empty connected cells found. - expandRegions(expandIters, level, chf, srcReg, srcDist, lvlStacks[sId], false); - } - - { - rcScopedTimer timerFloor(ctx, RC_TIMER_BUILD_REGIONS_FLOOD); - - // Mark new regions with IDs. - for (int j = 0; j= 0 && srcReg[i] == 0) - { - if (floodRegion(x, y, i, level, regionId, chf, srcReg, srcDist, stack)) - { - if (regionId == 0xFFFF) - { - ctx->log(RC_LOG_ERROR, "rcBuildRegions: Region ID overflow"); - return false; - } - - regionId++; - } - } - } - } - } - - // Expand current regions until no empty connected cells found. - expandRegions(expandIters*8, 0, chf, srcReg, srcDist, stack, true); - - ctx->stopTimer(RC_TIMER_BUILD_REGIONS_WATERSHED); - - { - rcScopedTimer timerFilter(ctx, RC_TIMER_BUILD_REGIONS_FILTER); - - // Merge regions and filter out smalle regions. - rcIntArray overlaps; - chf.maxRegions = regionId; - if (!mergeAndFilterRegions(ctx, minRegionArea, mergeRegionArea, chf.maxRegions, chf, srcReg, overlaps)) - return false; - - // If overlapping regions were found during merging, split those regions. - if (overlaps.size() > 0) - { - ctx->log(RC_LOG_ERROR, "rcBuildRegions: %d overlapping regions.", overlaps.size()); - } - } - - // Write the result out. - for (int i = 0; i < chf.spanCount; ++i) - chf.spans[i].reg = srcReg[i]; - - return true; -} - - -bool rcBuildLayerRegions(rcContext* ctx, rcCompactHeightfield& chf, - const int borderSize, const int minRegionArea) -{ - rcAssert(ctx); - - rcScopedTimer timer(ctx, RC_TIMER_BUILD_REGIONS); - - const int w = chf.width; - const int h = chf.height; - unsigned short id = 1; - - rcScopedDelete srcReg((unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_TEMP)); - if (!srcReg) - { - ctx->log(RC_LOG_ERROR, "rcBuildLayerRegions: Out of memory 'src' (%d).", chf.spanCount); - return false; - } - memset(srcReg,0,sizeof(unsigned short)*chf.spanCount); - - const int nsweeps = rcMax(chf.width,chf.height); - rcScopedDelete sweeps((rcSweepSpan*)rcAlloc(sizeof(rcSweepSpan)*nsweeps, RC_ALLOC_TEMP)); - if (!sweeps) - { - ctx->log(RC_LOG_ERROR, "rcBuildLayerRegions: Out of memory 'sweeps' (%d).", nsweeps); - return false; - } - - - // Mark border regions. - if (borderSize > 0) - { - // Make sure border will not overflow. - const int bw = rcMin(w, borderSize); - const int bh = rcMin(h, borderSize); - // Paint regions - paintRectRegion(0, bw, 0, h, id|RC_BORDER_REG, chf, srcReg); id++; - paintRectRegion(w-bw, w, 0, h, id|RC_BORDER_REG, chf, srcReg); id++; - paintRectRegion(0, w, 0, bh, id|RC_BORDER_REG, chf, srcReg); id++; - paintRectRegion(0, w, h-bh, h, id|RC_BORDER_REG, chf, srcReg); id++; - } - - chf.borderSize = borderSize; - - rcIntArray prev(256); - - // Sweep one line at a time. - for (int y = borderSize; y < h-borderSize; ++y) - { - // Collect spans from this row. - prev.resize(id+1); - memset(&prev[0],0,sizeof(int)*id); - unsigned short rid = 1; - - for (int x = borderSize; x < w-borderSize; ++x) - { - const rcCompactCell& c = chf.cells[x+y*w]; - - for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) - { - const rcCompactSpan& s = chf.spans[i]; - if (chf.areas[i] == RC_NULL_AREA) continue; - - // -x - unsigned short previd = 0; - if (rcGetCon(s, 0) != RC_NOT_CONNECTED) - { - const int ax = x + rcGetDirOffsetX(0); - const int ay = y + rcGetDirOffsetY(0); - const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0); - if ((srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai]) - previd = srcReg[ai]; - } - - if (!previd) - { - previd = rid++; - sweeps[previd].rid = previd; - sweeps[previd].ns = 0; - sweeps[previd].nei = 0; - } - - // -y - if (rcGetCon(s,3) != RC_NOT_CONNECTED) - { - const int ax = x + rcGetDirOffsetX(3); - const int ay = y + rcGetDirOffsetY(3); - const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3); - if (srcReg[ai] && (srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai]) - { - unsigned short nr = srcReg[ai]; - if (!sweeps[previd].nei || sweeps[previd].nei == nr) - { - sweeps[previd].nei = nr; - sweeps[previd].ns++; - prev[nr]++; - } - else - { - sweeps[previd].nei = RC_NULL_NEI; - } - } - } - - srcReg[i] = previd; - } - } - - // Create unique ID. - for (int i = 1; i < rid; ++i) - { - if (sweeps[i].nei != RC_NULL_NEI && sweeps[i].nei != 0 && - prev[sweeps[i].nei] == (int)sweeps[i].ns) - { - sweeps[i].id = sweeps[i].nei; - } - else - { - sweeps[i].id = id++; - } - } - - // Remap IDs - for (int x = borderSize; x < w-borderSize; ++x) - { - const rcCompactCell& c = chf.cells[x+y*w]; - - for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) - { - if (srcReg[i] > 0 && srcReg[i] < rid) - srcReg[i] = sweeps[srcReg[i]].id; - } - } - } - - - { - rcScopedTimer timerFilter(ctx, RC_TIMER_BUILD_REGIONS_FILTER); - - // Merge monotone regions to layers and remove small regions. - chf.maxRegions = id; - if (!mergeAndFilterLayerRegions(ctx, minRegionArea, chf.maxRegions, chf, srcReg)) - return false; - } - - - // Store the result out. - for (int i = 0; i < chf.spanCount; ++i) - chf.spans[i].reg = srcReg[i]; - - return true; -}