-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
48 lines (35 loc) · 1.16 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from flask import Flask, request, jsonify, render_template
import os
from flask_cors import CORS, cross_origin
from kidneyClassifier.utils.common import decodeImage
from kidneyClassifier.pipeline.prediction import PredictionPipeline
os.putenv('LANG', 'en_US.UTF-8')
os.putenv('LC_ALL', 'en_US.UTF-8')
app = Flask(__name__)
CORS(app)
class ClientApp:
def __init__(self):
self.filename = "inputImage.jpg"
self.classifier = PredictionPipeline(self.filename)
@app.route("/", methods=['GET'])
@cross_origin()
def home():
return render_template('index.html')
@app.route("/train", methods=['GET','POST'])
@cross_origin()
def trainRoute():
os.system("python main.py")
# os.system("dvc repro")
return "Training done successfully!"
@app.route("/predict", methods=['POST'])
@cross_origin()
def predictRoute():
image = request.json['image']
decodeImage(image, clApp.filename)
result = clApp.classifier.predict()
return jsonify(result)
if __name__ == "__main__":
clApp = ClientApp()
# app.run(host='0.0.0.0', port=8000) #for local
app.run(host='0.0.0.0', port=8080) #for AWS
# app.run(host='0.0.0.0', port=80) #for Azure