forked from Git-123-Hub/maddpg-pettingzoo-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
69 lines (59 loc) · 2.88 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import argparse
import os
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
from MADDPG import MADDPG
from main import get_env
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('env_name', type=str, default='simple_adversary_v2', help='name of the env',
choices=['simple_adversary_v2', 'simple_spread_v2', 'simple_tag_v2'])
parser.add_argument('folder', type=str, help='name of the folder where model is saved')
parser.add_argument('--episode-num', type=int, default=10, help='total episode num during evaluation')
parser.add_argument('--episode-length', type=int, default=50, help='steps per episode')
args = parser.parse_args()
model_dir = os.path.join('./results', args.env_name, args.folder)
assert os.path.exists(model_dir)
gif_dir = os.path.join(model_dir, 'gif')
if not os.path.exists(gif_dir):
os.makedirs(gif_dir)
gif_num = len([file for file in os.listdir(gif_dir)]) # current number of gif
env, dim_info = get_env(args.env_name, args.episode_length)
maddpg = MADDPG.load(dim_info, os.path.join(model_dir, 'model.pt'))
agent_num = env.num_agents
# reward of each episode of each agent
episode_rewards = {agent: np.zeros(args.episode_num) for agent in env.agents}
for episode in range(args.episode_num):
states = env.reset()
agent_reward = {agent: 0 for agent in env.agents} # agent reward of the current episode
frame_list = [] # used to save gif
while env.agents: # interact with the env for an episode
actions = maddpg.select_action(states)
next_states, rewards, dones, infos = env.step(actions)
frame_list.append(Image.fromarray(env.render(mode='rgb_array')))
states = next_states
for agent_id, reward in rewards.items(): # update reward
agent_reward[agent_id] += reward
env.close()
message = f'episode {episode + 1}, '
# episode finishes, record reward
for agent_id, reward in agent_reward.items():
episode_rewards[agent_id][episode] = reward
message += f'{agent_id}: {reward:>4f}; '
print(message)
# save gif
frame_list[0].save(os.path.join(gif_dir, f'out{gif_num + episode + 1}.gif'),
save_all=True, append_images=frame_list[1:], duration=1, loop=0)
# training finishes, plot reward
fig, ax = plt.subplots()
x = range(1, args.episode_num + 1)
for agent_id, rewards in episode_rewards.items():
ax.plot(x, rewards, label=agent_id)
ax.legend()
ax.set_xlabel('episode')
ax.set_ylabel('reward')
total_files = len([file for file in os.listdir(model_dir)])
title = f'evaluate result of maddpg solve {args.env_name} {total_files - 3}'
ax.set_title(title)
plt.savefig(os.path.join(model_dir, title))